History and Philosophy of Science as a Guide to Understanding Nature of Science

  • Mansoor Niaz Universidad de Oriente Cumaná, Estado Sucre, Venezuela
Palabras clave: history, philosophy, nature of science (en_US)
Palabras clave: history, philosophy, nature of science (es_ES)

Resumen (es_ES)

Nature of science (NOS) is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others) of understanding NOS: a) Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick); b) Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola); c) Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz). The following framework helps to facilitate integration: i) Elaboration of a theoretical framework based on presuppositions, guiding assumptions,  and previous experience of the scientist; ii) Formulation of research questions; iii) Operationalizing heuristic principles; iv) Designing experiments; and v) Understanding NOS. Various examples from history of science are provided to show how understanding ‘science in the making’ is important in order to integrate domain general and domain specific aspects of NOS. It is concluded that the integrated view of NOS facilitates ‘science in the making’ as based on the postulation of alternative interpretations of experimental data, which are controversial and thus science is primarily a human enterprise.

Historia y Filosofía de la Ciencia como una guía para entender la naturaleza de la Ciencia

La naturaleza de la ciencia (NOS) se considera que es un tema controvertido por los historiadores, los filósofos de educadores de la ciencia y de la ciencia. Es paradójico que todos enseñar ciencia y todavía tienen dificultades para comprender lo que es la ciencia y cómo se desarrolla y progresa. Un obstáculo importante en la comprensión de la NOS es que la ciencia es sobre todo "antinatural", es decir que no se puede aprender mediante una simple observación de los fenómenos. En la mayor parte de la historia del mundo y la filosofía de la ciencia son contenido de la ciencia "dentro" y como tal puede guiar nuestra comprensión de la NOS. Sin embargo, algunos profesores de disciplinas científicas consideran el "giro histórico" como anticuada y, por tanto, el abandono del enfoque histórico y en su lugar hacen hincapié en el modelo basado en la visión naturalista de la ciencia. El objetivo de esta presentación es mostrar que el enfoque histórico es una parte muy importante de la enseñanza de la ciencia y de hecho complementa el naturalismo. La comprensión de la NOS requiere generalmente dos aspectos de la ciencia: dominio general y dominio específico. En el aula esto puede ser ilustrado por la discusión de los modelos atómicos desarrollados en el siglo 20 que constituyen el aspecto específico de dominio de la NOS. Esto puede conducir a una comprensión de la naturaleza provisional de la ciencia que es un aspecto general de dominio de la NOS. Una revisión de la literatura en la educación científica revela tres puntos de vista (entre otros) de entendimiento NOS: a) Vista Consenso: Se intenta incluir sólo aquellos aspectos NOS dominio general que son los menos controvertido (Lederman, Abd-El-Khalick); b) Vista aire de familia: Sobre la base de las ideas de Wittgenstein, este punto de vista promueve la ciencia como un sistema cognitivo (Irzik, Nola); c) Visión integrada: este punto de vista postula que tanto el dominio de dominio general y aspectos específicos de la NOS no son dicotómicas, sino más bien deben ser integrados y son esenciales si queremos que los estudiantes entienden 'la ciencia en la toma' (Niaz). El siguiente marco ayuda a facilitar la integración: i) Elaboración de un marco teórico basado en presuposiciones, los supuestos de guía, y la experiencia previa del científico; ii) La formulación de preguntas de investigación; iii) Operacionalización de principios heurísticos; iv) El diseño de experimentos; y v) la comprensión de NOS. Varios ejemplos de la historia de la ciencia se proporcionan para mostrar cómo la comprensión 'la ciencia en la toma' es importante con el fin de integrar dominio generales y de dominio de aspectos específicos de la NOS. Se concluye que la visión integrada de la NOS facilita 'la ciencia en la toma "como basado en la postulación de interpretaciones alternativas de los datos experimentales, que son controvertidos y por lo tanto la ciencia es ante todo una empresa humana.

História e Filosofia da Ciência como um guia para a compreensão da natureza da Ciência

Natureza da ciência (NOS) é considerado como sendo um tema controverso por historiadores, filósofos de educadores de ciências e ciências. É paradoxal que todos nós ensinar ciência e ainda têm dificuldade em compreender o que é ciência e como ela se desenvolve e progride. Um grande obstáculo na compreensão NOS é que a ciência é essencialmente "não natural", isto é, não pode ser aprendido através da simples observação dos fenômenos. Na maior parte da história do mundo e filosofia da ciência se contentam ciência "dentro" e, como tal, pode guiar nossa compreensão da NOS. No entanto, alguns educadores de ciências consideram a "virada histórica", como antiquado e, portanto, negligenciar a abordagem histórica e em vez disso enfatizar o modelo baseado visão naturalista da ciência. O objetivo desta apresentação é mostrar que a abordagem histórica é uma parte muito importante de ensinar a ciência e, na verdade, complementa naturalismo. Compreender NOS geralmente requer dois aspectos da ciência: específico geral e de domínio Domínio. Na sala de aula o que pode ser ilustrado por discutir os modelos atômicos desenvolvidos no início do século 20 que constituem o aspecto específico de domínio de NOS. Este pode, então, levar a uma compreensão da natureza experimental da ciência que é um aspecto geral de NOS domínio. Uma revisão da literatura na educação científica revela três pontos de vista (entre outros) de entendimento NOS: a) visão de consenso: Ele tenta incluir apenas os aspectos NOS domínio geral que são o menos controverso (Lederman, Abd-El-Khalick); b) vista semelhança de família: Com base nas ideias de Wittgenstein, essa visão promove a ciência como um sistema cognitivo (Irzik, Nola); c) Visão integrada: esta visão postula que tanto domínio gerais e domínio aspectos específicos da NOS não são dicotômica mas precisam ser integradas e são essenciais se queremos que os alunos a compreender a "ciência na tomada '(Niaz). O quadro a seguir ajuda a facilitar a integração: i) Elaboração de um quadro teórico baseado em pressupostos, guiando pressupostos e experiência anterior do cientista; ii) Formulação de questões de pesquisa; iii) princípios heurísticos Operacionalização; iv) Projetando experimentos; e v) Entendimento NOS. Vários exemplos da história da ciência são fornecidos para mostrar como o entendimento "ciência na tomada 'é importante, a fim de integrar os aspectos específicos da NOS domínio geral e de domínio. Conclui-se que a visão integrada da NOS facilita a "ciência na tomada de decisões", como base na postulação de interpretações alternativas de dados experimentais, que são controversos e, portanto, a ciência é essencialmente um empreendimento humano.


Resumen (en_US)

Nature of science (NOS) is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others) of understanding NOS: a) Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick); b) Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola); c) Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz). The following framework helps to facilitate integration: i) Elaboration of a theoretical framework based on presuppositions, guiding assumptions, and previous experience of the scientist; ii) Formulation of research questions; iii) Operationalizing heuristic principles; iv) Designing experiments; and v) Understanding NOS. Various examples from history of science are provided to show how understanding ‘science in the making’ is important in order to integrate domain general and domain specific aspects of NOS. It is concluded that the integrated view of NOS facilitates ‘science in the making’ as based on the postulation of alternative interpretations of experimental data, which are controversial and thus science is primarily a human enterprise.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mansoor Niaz, Universidad de Oriente Cumaná, Estado Sucre, Venezuela
Docente investigador de Universidad de Oriente Cumaná, Estado Sucre, Venezuela

Referencias

Abd-El-Khalick, F. (2012). Examining the sources for our understanding about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34, 353-374.

Bevilacqua, F., & Bordoni, S. (1998). New contents for new media: Pavia project physics. Science & education, 7, 451-469.

Chang, Y.-H., Chang, C.-Y., & Tseng, Y.-H. (2010). Trends of science education research: An automatic content analysis. Journal of Science Education and Technology, 19, 315-331.

Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.

Deng, F., Chai, C.S., Tsai, C.-C., & Lin, T.-J. (2014). Assessing South China (Guangzhou) high school students’ views on nature of science: A validation study. Science & Education, 23, 843-863.

Duschl, R., & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22, 2109-2139.

Dyson, F.W., Eddington, A.S., & Davidson, C. (1920). A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Royal Society Philosophical Transactions, 220, 291-333.

Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9, 247-263.

Hodson, D., & Wong, S.L. (2014). From the horse’s mouth: Why scientists’ views are crucial to nature of science understanding. International Journal of Science Education, 36(16), 2639-2665.

Holton, G. (1978). Subelectrons, presuppositions, and the Millikan-Ehrenhaft dispute. Historical Studies in the Physical Sciences, 9, 161-224.

Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7-8), 591-607.

Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91-195). Cambridge, UK: Cambridge University Press.

Lederman, N.G. (2007). Nature of science: Past, present and future. In S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah, NJ: Erlbaum.

Lederman, N.G., Abd-El-Khalick, F., Bell, R.L., & Schwartz, R. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39, 497-521.

Machamer, P., & Wolters, G. (2004). Introduction. In P. Machamer & G. Wolters (Eds.), Science, values and objectivity (pp. 1-13). Pittsburgh: University of Pittsburgh Press.

Michelson, A.A., & Morley, E.W. (1887). On the relative motion of the earth and the luminiferous ether. American Journal of Science, 34(3rd series), 333-345.

Matthews, M.R. (2015). Science teaching: The contribution of history and philosophy of science (20th anniversary revised and expanded edition). New York: Routledge.

Millikan, R.A. (1917). The electron. Chicago: University of Chicago Press.

McComas, W.F., Almazroa, H., & Clough, M.P. (1998). The role and character of the nature of science in science education. Science & Education, 7, 511-532.

Niaz, M. (2001). Understanding nature of science as progressive transitions in heuristic principles. Science Education, 85, 684-690.

Niaz, M. (2005). An appraisal of the controversial nature of the oil drop experiment: Is closure possible? British Journal for the Philosophy of Science, 56, 681-702.

Niaz, M. (2009). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. Dordrecht, The Netherlands: Springer.

Niaz, M. (2012). From ‘science in the making’ to understanding the nature of science: An overview for science educators. New York: Routledge.

Niaz, M. (2016). Chemistry education and contributions from history and philosophy of science. Dordrecht, The Netherlands: Springer.

Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Leon Cooper’s perspective on teaching science: An interview study. Science & Education, 19, 39-54.

Niaz, M., & Rodríguez, M.A. (2001). Do we have to introduce history and philosophy of science or is it already ‘inside’ chemistry? Chemistry Education: Research and Practice in Europe, 2, 159-164.

Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692-720.

Rutherford, E. (1911). The scattering of alpha and beta particles by matter and the structure of the atom. Philosophical Magazine, 21, 669-688.

Schwab, J.J. (1974). The concept of the structure of a discipline. In E.W. Eisner & E. Vallance (Eds.), Conflicting conceptions of curriculum (pp. 162-175). Berkeley, CA: McCutchan Publishing Corp.

Smith, M.U., & Scharmann, L.C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83, 493-509.

Smith, M.U., & Scharmann, L.C. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education, 17, 219-248.

Vesterinen, V.-M., & Aksela, M. (2013). Design of chemistry teacher education course on nature of science. Science & Education, 22(9), 2193-2225.

Wolpert, L. (1993). The unnatural nature of science. Cambridge, MA: Harvard University Press.

Wong, S.L., & Hodson, D. (2009). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93, 109-130.

Cómo citar
Niaz, M. (2016). History and Philosophy of Science as a Guide to Understanding Nature of Science. Revista Científica, 1(24), 7-16. https://doi.org/10.14483/udistrital.jour.RC.2016.24.a1
Publicado: 2016-06-14
Sección
Educación Científica