Vol. 44 Núm. 2 (2022): Mayo-Agosto


Educación científica y tecnológica

Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos

Light-Emitting Devices Based on Organic Semiconductor Compounds: A Review Applied to Red Emitters


Palabras clave:

DCJTB, emisión color rojo, Ir(piq)2(acac), mecanismos de emisión (es).

Palabras clave:

DCJTB, Ir(piq)2(acac), emssion mechanisms, red emission (en).


Resumen (es)

Se presenta una revisión del estado actual de dispositivos orgánicos emisores de luz (OLED, acrónimo de organic light-emitting diode), con énfasis en aquellos que emiten en la franja del rojo. Para entender el funcionamiento de este tipo de dispositivos, se muestran las diferentes arquitecturas utilizadas y los mecanismos de emisión de estos dispositivos optoelectrónicos por radiación fluorescente y fosforescente. Para el caso de emisores color rojo, se presentan ejemplos con dos tipos de materiales mayormente usados: DJCTB para fluorescencia e Ir(piq)2(acac) para fosforescencia. Si bien las arquitecturas y mecanismos aquí revisados se aplican a emisores rojos, también pueden ser extendidos a emisores en todo el rango visible.

Resumen (en)

A review of the current state of organic light-emitting devices (OLED) is presented, with an emphasis on those that emit in the red band. To understand the operation of this type of device, the different architectures used and the emission mechanisms of these optoelectronic devices by fluorescent and phosphorescent radiation are shown. For the case of red emitters, examples with the two most commonly used types of materials are presented: DJCTB for fluorescence and Ir(piq)2(acac) for phosphorescence. Although the architectures and mechanisms herein reviewed apply to red emitters, they can also be extended to emitters throughout the visible range.


Baek, S.-Y., Kwak, S.-Y., Kim, S.-T., Hwang, K. Y., Koo, H., Son, W.-J., Choi, B., Kim, S., Choi, H., Baik, M.-H. (2020). Ancillary ligand increases the efficiency of heteroleptic Ir-based triplet emitters in OLED devices. Nature Communications, 11(1), e16091.

Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S. R. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151-154.

Bender, V. C., Marchesan, T. B., Alonso, J. M. (2015). Solid-state lighting: A concise review of the state of the art on LED and OLED Modeling. IEEE Industrial Electronics Magazine, 9(2), 6-16.

Bhatnagar, P. K. (2018). Organic light-emitting diodes—A review. In Khan, Z. (ed.) Nanomaterials and Their Applications. Advanced Structured Materials, vol. 84. Springer, Singapore.

Burgos, V. (2019). Análisis de propiedades morfológicas y ópticas de capas orgánicas transportadoras de huecos [Tesis de Maestría]. Universidad Nacional de Colombia, Colombia

Chamorro Posada, P., Martín Gil, J., Martín Ramos, P., Navas Gracia, L. M. (2008). Fundamentos de la tecnología OLED. Universidad de Valladolid. Instituto de Estudios de Iberoamérica y Portugal.

Chen, C. H., Tang, C. W., Shi, J., Klubek, K. P. (2000). Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence. Thin Solid Films, 363(1-2), 327-331.

da Luz de Sousa, I., Farias Ximenes, V., de Souza, A. R., Morgon, N. H. (2019). Solvent-induced Stokes’ shift in DCJTB: Experimental and theoretical results. Journal of Molecular Structure, 1192, 186-191.

Dang, M. T., Wantz, G., Hirsch, L., Wuest, J. D. (2017). Recycling indium tin oxide (ITO) anodes for use in organic light-emitting diodes (OLEDs). Thin Solid Films, 638, 236-243.

Duan, L. (2019). LEDs based on small molecules. In F. Gao (Ed.) Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, pp. 215-304. Elsevier.

Forrest, S. R. (2020). Organic Electronics: Foundations to Applications. Oxford University Press

He, G. (2015). Organic Semiconductor Electroluminescent Materials. In Li Y. (ed.) Organic Optoelectronic Materials. Lecture Notes in Chemistry, vol. 91. Springer.

Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J. M., Bräse, S. (2021). A Brief History of OLEDs—Emitter Development and Industry Milestones. Advanced Materials, 33(9), e5630.

Hsiang, E.-L., Yang, Z., Yang, Q., Lan, Y.-F., Wu, S.-T. (2021). Prospects and challenges of mini-LED, OLED, and micro-LED displays. Journal of the Society for Information Display, 29(6), 446-465.

Hu, S., Zeng, J., Zhu, X., Guo, J., Chen, S., Zhao, Z., Tang, B. Z. (2019a). Universal bipolar host materials for blue, green, and red phosphorescent OLEDs with excellent efficiencies and small-efficiency roll-off. ACS Applied Materials and Interfaces, 11(30), 27134-27144.

Hu, Y.-X., Xia, X., He, W.-Z., Tang, Z.-J., Lv, Y.-L., Li, X., Zhang, D.-Y. (2019b). Recent developments in benzothiazole-based iridium(Ⅲ) complexes for application in OLEDs as electrophosphorescent emitters. Organic Electronics, 66, 126-135.

Jankus, V., Winscom, C., Monkman, A. P. (2009). The photophysics of singlet, triplet, and degradation trap states in 4,4- N, N’ -dicarbazolyl- 1, 1’ -biphenyl. Journal of Chemical Physics, 130(7), e7163.

Jeon, W. S., Park, T. J., Kim, S. Y., Pode, R., Jang, J., Kwon, J. H. (2009). Ideal host and guest system in phosphorescent OLEDs. Organic Electronics, 10(2), 240-246.

Jou, J.-H., Kumar, S., Agrawal, A., Li, T.-H., Sahoo, S. (2015). Approaches for fabricating high efficiency organic light emitting diodes. Journal of Materials Chemistry C, 3(13), 2974-3002.

Kim, K.-H., Kim, J.-J. (2018). Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Advanced Materials, 30(42), e5600.

Kim, S.-Y., Jeong, W.-I., Mayr, C., Park, Y.-S., Kim, K.-H., Lee, J.-H., Moon, C.-K., Brütting, W., Kim, J.-J. (2013). Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Advanced Functional Materials, 23(31), 3896-3900.

Kim, K.-H., Moon, C.-K., Sun, J. W., Sim, B., Kim, J.-J. (2015). Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex. Advanced Optical Materials, 3(7), 895-899.

Lampe, T., Schmidt, T. D., Jurow, M. J., Djurovich, P. I., Thompson, M. E., Brütting, W. (2016). Dependence of phosphorescent emitter orientation on deposition technique in doped organic films. Chemistry of Materials, 28(3), 712-715.

Li, Q. R., Zhao, Y., Liu, C., Zhan, H., Cheng, Y., Li, W. (2021). Efficient triplet harvest for orange-red and white OLEDs based exciplex host with different donor/acceptor ratios. Optical Materials, 113, e110907.

Liu, X., Wang, S., Yao, B., Zhang, B., Ho, C.-L., Wong, W.-Y., Cheng, Y., Xie, Z. (2015). New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors. Organic Electronics, 21, 1-8.

Liu, Z., Lei, Y., Fan, C., Peng, X., Ji, X., Jabbour, G. E., Yang, X. (2017). Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials. Organic Electronics, 41, 237-244.

Mahdiyar, R., Fadavieslam, M. R. (2020). The effects of chemical treatment on ITO properties and performance of OLED devices. Optical and Quantum Electronics, 52.

Ossila. (s.f.). Ossila Enabling Materials Science.

Pode, R. (2020). Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renewable and Sustainable Energy Reviews, 133, e110043.

Prajapati, M. J., Yadav, R. A. K., Swayamprabha, S. S., Dubey, D. K., Solanki, J. D., Jou, J.-H., Surati, K. R. (2020). Highly-efficient solution-processed deep-red organic light-emitting diodes based on heteroleptic Ir(III) complexes with effective heterocyclic Schiff base as ancillary ligand. Organic Electronics, 86, e105885.

Qu, F., Jia, W., Zhu, H., Tang, X., Xu, J., Zhao, X., Ma, C., Ye, S., Xiong, Z. (2020). Enhanced electroluminescence efficiency using reverse intersystem crossing induced by the strong triplet fusion of rubrene as a sensitizer. Journal of Physical Chemistry C, 124(17), 9451-9459.

Sharma, G., Hashmi, S. Z., Kumar, U., Kattayat, S., Ayaz Ahmad, M., Kumar, S., Dalela, S., Alvi, P. A. (2020). Optical and electronic characteristics of ITO/NPB/Alq3:DCJTB/Alq3/Ag heterostructure based organic light emitting diode. Optik, 223, e165572.

Sigma-Aldrich. (s.f.). Sigma-Aldrich.

Song, M.-G., Kim, K.-S., Yang, H. I., Kim, S. K., Kim, J.-H., Han, C.-W., Choi, H.-C., Pode, R., Kwon, J. H. (2020). Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Organic Electronics, 76, e105418.

Song, W., Gao, L., Zhang, T., Huang, J., Su, J. (2019). [1,2,4]Triazolo[1,5-a]pyridine based host materials for high-performance red PhOLEDs with external quantum efficiencies over 23%. Journal of Luminescence, 206, 386-392.

Su, T.-H., Fan, C.-H., Ou-Yang, Y.-H., Hsu, L.-C., Cheng, C.-H. (2013). Highly efficient deep-red organic electrophosphorescent devices with excellent operational stability using bis(indoloquinoxalinyl) derivatives as the host materials. Journal of Materials Chemistry C, 1(33), 5084-5092.

Tang, C. W., Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915.

Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492, 234-238.

Wang, Y., Li, X., Duan, Q., Liu, X., Yan, G., Ma, D. (2019). High-performance red organic light-emitting diodes with ultrathin Cu film as anodes. Organic Electronics, 68, 218-220.

Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., Fan, X., Chen, L., Gao, P., Ge, Z. (2018). Small-molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Advanced Optical Materials, 6(20), e512.

Wiederschain, G. Y. (2011). The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies. Biochemistry (Moscow), 76(11).

Wu, Y., Yang, C., Liu, J., Zhang, M., Liu, W., Li, W., Wu, C., Cheng, G., Yang, Q., Wei, G., Che, C.-M. (2021). Phosphorescent [3+2+1] coordinated Ir(III) Cyano complexes in achieving efficient phosphors and their application into OLED devices. Chemical Science, 30.

Xie, J., Li, P., Ho, K., Walker, G. C., Lu, Z.-H. (2020). Effect of Ag cathode deposition rate on the performance of organic light-emitting diodes. Materials Science in Semiconductor Processing, 117, e105170.

Xue, C., Lin, H., Zhang, G., Hu, Y., Jiang, W., Lang, J., Wang, D., Xing, G. (2020). Recent advances in thermally activated delayed fluorescence for white OLEDs applications. Journal of Materials Science: Materials in Electronics, 31(6), 4444-4462.

Yamada, T. (2021). Displays, Next Generation Self-emitting

Yang, S.-H., & Huang, T.-L. (2021). High fluorescence efficiency of dual-wavelength white OLED with NPB emission and triplet annihilation. Optical Materials, 111, e110725.

Youn, W., Lee, J., Xu, M., Singh, R., So, F. (2015). Corrugated sapphire substrates for organic light-emitting diode light extraction. ACS Applied Materials and Interfaces, 7(17), 8974-8978.

Zeng, W., Zhou, T., Ning, W., Zhong, C., He, J., Gong, S., Xie, G., Yang, C. (2019). Realizing 22.5% external quantum efficiency for solution-processed thermally activated delayed-fluorescence OLEDs with red emission at 622 nm via a synergistic strategy of molecular engineering and host selection. Advanced Materials, 31(33), e1404.

Zhan, G., Liu, Z., Bian, Z., Huang, C. (2019). Recent advances in organic light-emitting diodes based on pure organic room temperature phosphorescence materials. Frontiers in Chemistry, 7, e305.

Zhang, X. H., Chen, B. J., Lin, X. Q., Wong, O. Y., Lee, C. S., Kwong, H. L., Lee, S. T., Wu, S. K. (2001). A new family of red dopants based on chromene-containing compounds for organic electroluminescent devices. Chemistry of Materials, 13(5), 1565-1569.

Zhao, B., Zhang, T., Chu, B., Li, W., Su, Z., Wu, H., Yan, X., Jin, F., Gao, Y., Liu, C. (2015). Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Scientific Reports, 5, e10697.

Zissis, G., Bertoldi, P. (2014). 2014 Status Report on Organic Light Emitting Diodes (OLED). European Commission, Joint Research Centre, Institute for Energy and Transport.

Cómo citar


Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A., & Burgos-Castro, V. (2022). Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica, 44(2), 158–171.


Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A. y Burgos-Castro, V. 2022. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica. 44, 2 (may 2022), 158–171. DOI:


Ardila-Vargas, Ángel-M.; Méndez-Merchán, G.-A.; Burgos-Castro, V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Rev. Cient. 2022, 44, 158-171.


ARDILA-VARGAS, Ángel-M.; MÉNDEZ-MERCHÁN, G.-A.; BURGOS-CASTRO, V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica, [S. l.], v. 44, n. 2, p. 158–171, 2022. DOI: 10.14483/23448350.18267. Disponível em: Acesso em: 19 may. 2022.


Ardila-Vargas, Ángel-Miguel, Germán-Anibal Méndez-Merchán, y Valeria Burgos-Castro. 2022. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica 44 (2):158-71.


Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A. y Burgos-Castro, V. (2022) «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos», Revista Científica, 44(2), pp. 158–171. doi: 10.14483/23448350.18267.


Ángel-M. Ardila-Vargas, G.-A. Méndez-Merchán, y V. Burgos-Castro, «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos», Rev. Cient., vol. 44, n.º 2, pp. 158–171, may 2022.


Ardila-Vargas, Ángel-M., G.-A. Méndez-Merchán, y V. Burgos-Castro. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica, vol. 44, n.º 2, mayo de 2022, pp. 158-71, doi:10.14483/23448350.18267.


Ardila-Vargas, Ángel-Miguel, Germán-Anibal Méndez-Merchán, y Valeria Burgos-Castro. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica 44, no. 2 (mayo 1, 2022): 158–171. Accedido mayo 19, 2022.


Ardila-Vargas Ángel-M, Méndez-Merchán G-A, Burgos-Castro V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Rev. Cient. [Internet]. 1 de mayo de 2022 [citado 19 de mayo de 2022];44(2):158-71. Disponible en:

Descargar cita






Los datos de descargas todavía no están disponibles.