DOI:

https://doi.org/10.14483/23448350.18267

Publicado:

2022-05-01

Número:

Vol. 44 Núm. 2 (2022): Mayo-Agosto

Sección:

Educación científica y tecnológica

Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos

Light-Emitting Devices Based on Organic Semiconductor Compounds: A Review Applied to Red Emitters

Autores/as

Palabras clave:

DCJTB, emisión color rojo, Ir(piq)2(acac), mecanismos de emisión (es).

Palabras clave:

DCJTB, Ir(piq)2(acac), emssion mechanisms, red emission (en).

Descargas

Resumen (es)

Se presenta una revisión del estado actual de dispositivos orgánicos emisores de luz (OLED, acrónimo de organic light-emitting diode), con énfasis en aquellos que emiten en la franja del rojo. Para entender el funcionamiento de este tipo de dispositivos, se muestran las diferentes arquitecturas utilizadas y los mecanismos de emisión de estos dispositivos optoelectrónicos por radiación fluorescente y fosforescente. Para el caso de emisores color rojo, se presentan ejemplos con dos tipos de materiales mayormente usados: DJCTB para fluorescencia e Ir(piq)2(acac) para fosforescencia. Si bien las arquitecturas y mecanismos aquí revisados se aplican a emisores rojos, también pueden ser extendidos a emisores en todo el rango visible.

Resumen (en)

A review of the current state of organic light-emitting devices (OLED) is presented, with an emphasis on those that emit in the red band. To understand the operation of this type of device, the different architectures used and the emission mechanisms of these optoelectronic devices by fluorescent and phosphorescent radiation are shown. For the case of red emitters, examples with the two most commonly used types of materials are presented: DJCTB for fluorescence and Ir(piq)2(acac) for phosphorescence. Although the architectures and mechanisms herein reviewed apply to red emitters, they can also be extended to emitters throughout the visible range.

Referencias

Baek, S.-Y., Kwak, S.-Y., Kim, S.-T., Hwang, K. Y., Koo, H., Son, W.-J., Choi, B., Kim, S., Choi, H., Baik, M.-H. (2020). Ancillary ligand increases the efficiency of heteroleptic Ir-based triplet emitters in OLED devices. Nature Communications, 11(1), e16091. https://doi.org/10.1038/s41467-020-16091-1

Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S. R. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151-154. https://doi.org/10.1038/25954

Bender, V. C., Marchesan, T. B., Alonso, J. M. (2015). Solid-state lighting: A concise review of the state of the art on LED and OLED Modeling. IEEE Industrial Electronics Magazine, 9(2), 6-16. https://doi.org/10.1109/MIE.2014.2360324

Bhatnagar, P. K. (2018). Organic light-emitting diodes—A review. In Khan, Z. (ed.) Nanomaterials and Their Applications. Advanced Structured Materials, vol. 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_10

Burgos, V. (2019). Análisis de propiedades morfológicas y ópticas de capas orgánicas transportadoras de huecos [Tesis de Maestría]. Universidad Nacional de Colombia, Colombia

Chamorro Posada, P., Martín Gil, J., Martín Ramos, P., Navas Gracia, L. M. (2008). Fundamentos de la tecnología OLED. Universidad de Valladolid. Instituto de Estudios de Iberoamérica y Portugal. https://doi.org/10.13140/2.1.4555.8721

Chen, C. H., Tang, C. W., Shi, J., Klubek, K. P. (2000). Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence. Thin Solid Films, 363(1-2), 327-331. https://doi.org/10.1016/S0040-6090(99)01010-X

da Luz de Sousa, I., Farias Ximenes, V., de Souza, A. R., Morgon, N. H. (2019). Solvent-induced Stokes’ shift in DCJTB: Experimental and theoretical results. Journal of Molecular Structure, 1192, 186-191. https://doi.org/10.1016/j.molstruc.2019.04.117

Dang, M. T., Wantz, G., Hirsch, L., Wuest, J. D. (2017). Recycling indium tin oxide (ITO) anodes for use in organic light-emitting diodes (OLEDs). Thin Solid Films, 638, 236-243. https://doi.org/10.1016/j.tsf.2017.07.045

Duan, L. (2019). LEDs based on small molecules. In F. Gao (Ed.) Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, pp. 215-304. Elsevier. https://doi.org/10.1016/B978-0-12-813647-8.00007-2

Forrest, S. R. (2020). Organic Electronics: Foundations to Applications. Oxford University Press

He, G. (2015). Organic Semiconductor Electroluminescent Materials. In Li Y. (ed.) Organic Optoelectronic Materials. Lecture Notes in Chemistry, vol. 91. Springer. https://doi.org/10.1007/978-3-319-16862-3_6

Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J. M., Bräse, S. (2021). A Brief History of OLEDs—Emitter Development and Industry Milestones. Advanced Materials, 33(9), e5630. https://doi.org/10.1002/adma.202005630

Hsiang, E.-L., Yang, Z., Yang, Q., Lan, Y.-F., Wu, S.-T. (2021). Prospects and challenges of mini-LED, OLED, and micro-LED displays. Journal of the Society for Information Display, 29(6), 446-465. https://doi.org/10.1002/jsid.1058

Hu, S., Zeng, J., Zhu, X., Guo, J., Chen, S., Zhao, Z., Tang, B. Z. (2019a). Universal bipolar host materials for blue, green, and red phosphorescent OLEDs with excellent efficiencies and small-efficiency roll-off. ACS Applied Materials and Interfaces, 11(30), 27134-27144. https://doi.org/10.1021/acsami.9b06995

Hu, Y.-X., Xia, X., He, W.-Z., Tang, Z.-J., Lv, Y.-L., Li, X., Zhang, D.-Y. (2019b). Recent developments in benzothiazole-based iridium(Ⅲ) complexes for application in OLEDs as electrophosphorescent emitters. Organic Electronics, 66, 126-135. https://doi.org/10.1016/j.orgel.2018.12.029

Jankus, V., Winscom, C., Monkman, A. P. (2009). The photophysics of singlet, triplet, and degradation trap states in 4,4- N, N’ -dicarbazolyl- 1, 1’ -biphenyl. Journal of Chemical Physics, 130(7), e7163. https://doi.org/10.1063/1.3077163

Jeon, W. S., Park, T. J., Kim, S. Y., Pode, R., Jang, J., Kwon, J. H. (2009). Ideal host and guest system in phosphorescent OLEDs. Organic Electronics, 10(2), 240-246. https://doi.org/10.1016/j.orgel.2008.11.012

Jou, J.-H., Kumar, S., Agrawal, A., Li, T.-H., Sahoo, S. (2015). Approaches for fabricating high efficiency organic light emitting diodes. Journal of Materials Chemistry C, 3(13), 2974-3002. https://doi.org/10.1039/c4tc02495h

Kim, K.-H., Kim, J.-J. (2018). Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Advanced Materials, 30(42), e5600. https://doi.org/10.1002/adma.201705600

Kim, S.-Y., Jeong, W.-I., Mayr, C., Park, Y.-S., Kim, K.-H., Lee, J.-H., Moon, C.-K., Brütting, W., Kim, J.-J. (2013). Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Advanced Functional Materials, 23(31), 3896-3900. https://doi.org/10.1002/adfm.201300104

Kim, K.-H., Moon, C.-K., Sun, J. W., Sim, B., Kim, J.-J. (2015). Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex. Advanced Optical Materials, 3(7), 895-899. https://doi.org/10.1002/adom.201400644

Lampe, T., Schmidt, T. D., Jurow, M. J., Djurovich, P. I., Thompson, M. E., Brütting, W. (2016). Dependence of phosphorescent emitter orientation on deposition technique in doped organic films. Chemistry of Materials, 28(3), 712-715. https://doi.org/10.1021/acs.chemmater.5b04607

Li, Q. R., Zhao, Y., Liu, C., Zhan, H., Cheng, Y., Li, W. (2021). Efficient triplet harvest for orange-red and white OLEDs based exciplex host with different donor/acceptor ratios. Optical Materials, 113, e110907. https://doi.org/10.1016/j.optmat.2021.110907

Liu, X., Wang, S., Yao, B., Zhang, B., Ho, C.-L., Wong, W.-Y., Cheng, Y., Xie, Z. (2015). New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors. Organic Electronics, 21, 1-8. https://doi.org/10.1016/j.orgel.2015.02.016

Liu, Z., Lei, Y., Fan, C., Peng, X., Ji, X., Jabbour, G. E., Yang, X. (2017). Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials. Organic Electronics, 41, 237-244. https://doi.org/10.1016/j.orgel.2016.11.010

Mahdiyar, R., Fadavieslam, M. R. (2020). The effects of chemical treatment on ITO properties and performance of OLED devices. Optical and Quantum Electronics, 52. https://doi.org/10.1007/s11082-020-02378-6

Ossila. (s.f.). Ossila Enabling Materials Science. https://www.ossila.com

Pode, R. (2020). Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renewable and Sustainable Energy Reviews, 133, e110043. https://doi.org/10.1016/j.rser.2020.110043

Prajapati, M. J., Yadav, R. A. K., Swayamprabha, S. S., Dubey, D. K., Solanki, J. D., Jou, J.-H., Surati, K. R. (2020). Highly-efficient solution-processed deep-red organic light-emitting diodes based on heteroleptic Ir(III) complexes with effective heterocyclic Schiff base as ancillary ligand. Organic Electronics, 86, e105885. https://doi.org/10.1016/j.orgel.2020.105885

Qu, F., Jia, W., Zhu, H., Tang, X., Xu, J., Zhao, X., Ma, C., Ye, S., Xiong, Z. (2020). Enhanced electroluminescence efficiency using reverse intersystem crossing induced by the strong triplet fusion of rubrene as a sensitizer. Journal of Physical Chemistry C, 124(17), 9451-9459. https://doi.org/10.1021/acs.jpcc.0c01104

Sharma, G., Hashmi, S. Z., Kumar, U., Kattayat, S., Ayaz Ahmad, M., Kumar, S., Dalela, S., Alvi, P. A. (2020). Optical and electronic characteristics of ITO/NPB/Alq3:DCJTB/Alq3/Ag heterostructure based organic light emitting diode. Optik, 223, e165572. https://doi.org/10.1016/j.ijleo.2020.165572

Sigma-Aldrich. (s.f.). Sigma-Aldrich. https://www.sigmaaldrich.com/CO/es

Song, M.-G., Kim, K.-S., Yang, H. I., Kim, S. K., Kim, J.-H., Han, C.-W., Choi, H.-C., Pode, R., Kwon, J. H. (2020). Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Organic Electronics, 76, e105418. https://doi.org/10.1016/j.orgel.2019.105418

Song, W., Gao, L., Zhang, T., Huang, J., Su, J. (2019). [1,2,4]Triazolo[1,5-a]pyridine based host materials for high-performance red PhOLEDs with external quantum efficiencies over 23%. Journal of Luminescence, 206, 386-392. https://doi.org/10.1016/j.jlumin.2018.09.006

Su, T.-H., Fan, C.-H., Ou-Yang, Y.-H., Hsu, L.-C., Cheng, C.-H. (2013). Highly efficient deep-red organic electrophosphorescent devices with excellent operational stability using bis(indoloquinoxalinyl) derivatives as the host materials. Journal of Materials Chemistry C, 1(33), 5084-5092. https://doi.org/10.1039/c3tc30823e

Tang, C. W., Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915. https://doi.org/10.1063/1.98799

Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492, 234-238. https://doi.org/10.1038/nature11687

Wang, Y., Li, X., Duan, Q., Liu, X., Yan, G., Ma, D. (2019). High-performance red organic light-emitting diodes with ultrathin Cu film as anodes. Organic Electronics, 68, 218-220. https://doi.org/10.1016/j.orgel.2019.02.027

Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., Fan, X., Chen, L., Gao, P., Ge, Z. (2018). Small-molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Advanced Optical Materials, 6(20), e512. https://doi.org/10.1002/adom.201800512

Wiederschain, G. Y. (2011). The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies. Biochemistry (Moscow), 76(11). https://doi.org/10.1134/s0006297911110101

Wu, Y., Yang, C., Liu, J., Zhang, M., Liu, W., Li, W., Wu, C., Cheng, G., Yang, Q., Wei, G., Che, C.-M. (2021). Phosphorescent [3+2+1] coordinated Ir(III) Cyano complexes in achieving efficient phosphors and their application into OLED devices. Chemical Science, 30. https://doi.org/10.1039/d1sc01426a

Xie, J., Li, P., Ho, K., Walker, G. C., Lu, Z.-H. (2020). Effect of Ag cathode deposition rate on the performance of organic light-emitting diodes. Materials Science in Semiconductor Processing, 117, e105170. https://doi.org/10.1016/j.mssp.2020.105170

Xue, C., Lin, H., Zhang, G., Hu, Y., Jiang, W., Lang, J., Wang, D., Xing, G. (2020). Recent advances in thermally activated delayed fluorescence for white OLEDs applications. Journal of Materials Science: Materials in Electronics, 31(6), 4444-4462. https://doi.org/10.1007/s10854-020-03060-z

Yamada, T. (2021). Displays, Next Generation Self-emitting

Yang, S.-H., & Huang, T.-L. (2021). High fluorescence efficiency of dual-wavelength white OLED with NPB emission and triplet annihilation. Optical Materials, 111, e110725. https://doi.org/10.1016/j.optmat.2020.110725

Youn, W., Lee, J., Xu, M., Singh, R., So, F. (2015). Corrugated sapphire substrates for organic light-emitting diode light extraction. ACS Applied Materials and Interfaces, 7(17), 8974-8978. https://doi.org/10.1021/acsami.5b01533

Zeng, W., Zhou, T., Ning, W., Zhong, C., He, J., Gong, S., Xie, G., Yang, C. (2019). Realizing 22.5% external quantum efficiency for solution-processed thermally activated delayed-fluorescence OLEDs with red emission at 622 nm via a synergistic strategy of molecular engineering and host selection. Advanced Materials, 31(33), e1404. https://doi.org/10.1002/adma.201901404

Zhan, G., Liu, Z., Bian, Z., Huang, C. (2019). Recent advances in organic light-emitting diodes based on pure organic room temperature phosphorescence materials. Frontiers in Chemistry, 7, e305. https://doi.org/10.3389/fchem.2019.00305

Zhang, X. H., Chen, B. J., Lin, X. Q., Wong, O. Y., Lee, C. S., Kwong, H. L., Lee, S. T., Wu, S. K. (2001). A new family of red dopants based on chromene-containing compounds for organic electroluminescent devices. Chemistry of Materials, 13(5), 1565-1569. https://doi.org/10.1021/cm0008664

Zhao, B., Zhang, T., Chu, B., Li, W., Su, Z., Wu, H., Yan, X., Jin, F., Gao, Y., Liu, C. (2015). Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Scientific Reports, 5, e10697. https://doi.org/10.1038/srep10697

Zissis, G., Bertoldi, P. (2014). 2014 Status Report on Organic Light Emitting Diodes (OLED). European Commission, Joint Research Centre, Institute for Energy and Transport. https://doi.org/10.2790/461054

Cómo citar

APA

Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A., & Burgos-Castro, V. (2022). Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica, 44(2), 158–171. https://doi.org/10.14483/23448350.18267

ACM

[1]
Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A. y Burgos-Castro, V. 2022. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica. 44, 2 (may 2022), 158–171. DOI:https://doi.org/10.14483/23448350.18267.

ACS

(1)
Ardila-Vargas, Ángel-M.; Méndez-Merchán, G.-A.; Burgos-Castro, V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Rev. Cient. 2022, 44, 158-171.

ABNT

ARDILA-VARGAS, Ángel-M.; MÉNDEZ-MERCHÁN, G.-A.; BURGOS-CASTRO, V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Revista Científica, [S. l.], v. 44, n. 2, p. 158–171, 2022. DOI: 10.14483/23448350.18267. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/18267. Acesso em: 19 may. 2022.

Chicago

Ardila-Vargas, Ángel-Miguel, Germán-Anibal Méndez-Merchán, y Valeria Burgos-Castro. 2022. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica 44 (2):158-71. https://doi.org/10.14483/23448350.18267.

Harvard

Ardila-Vargas, Ángel-M., Méndez-Merchán, G.-A. y Burgos-Castro, V. (2022) «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos», Revista Científica, 44(2), pp. 158–171. doi: 10.14483/23448350.18267.

IEEE

[1]
Ángel-M. Ardila-Vargas, G.-A. Méndez-Merchán, y V. Burgos-Castro, «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos», Rev. Cient., vol. 44, n.º 2, pp. 158–171, may 2022.

MLA

Ardila-Vargas, Ángel-M., G.-A. Méndez-Merchán, y V. Burgos-Castro. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica, vol. 44, n.º 2, mayo de 2022, pp. 158-71, doi:10.14483/23448350.18267.

Turabian

Ardila-Vargas, Ángel-Miguel, Germán-Anibal Méndez-Merchán, y Valeria Burgos-Castro. «Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos». Revista Científica 44, no. 2 (mayo 1, 2022): 158–171. Accedido mayo 19, 2022. https://revistas.udistrital.edu.co/index.php/revcie/article/view/18267.

Vancouver

1.
Ardila-Vargas Ángel-M, Méndez-Merchán G-A, Burgos-Castro V. Dispositivos emisores de luz basados en compuestos semiconductores orgánicos: una revisión aplicada a emisores rojos. Rev. Cient. [Internet]. 1 de mayo de 2022 [citado 19 de mayo de 2022];44(2):158-71. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/18267

Descargar cita

Visitas

60

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.