DOI:
https://doi.org/10.14483/udistrital.jour.RC.2015.23.a6Published:
09/01/2015Issue:
Vol. 23 No. 3 (2015): September-December 2015Section:
Science and EngineeringMembranas Vibrantes en Varias Dimensiones
Vibrating Membranes in Higher Dimensions
Keywords:
ecuación de onda, membranas vibrantes (es).Downloads
Abstract (es)
Encontramos existencia y unicidad de soluciones –periódicas en cada variable a problemas de la forma . Suponemos que es de clase . Empleamos el Principio de Contracciones de Banach y el Método de Continuidad para encontrar soluciones. Se muestran dos resultados. En uno se asume que la no-linealidades pequeña y en el otro que está acotada y es de derivada pequeña.
Abstract (en)
We found existence and uniqueness of–periódicas solutions to the problem . We assume thatis of class . We use the Contraction Principle and the Continuity Method. Two results are shown. In one hand we assume that the nonlinearityis small. In the other hand, we assume that is bounded and with small derivative.
References
Berti, M. y Bolle, P. (2010). Sobolev Periodic Solutions of Nonlinear Wave Equations in Higher Spatial Dimensions. 195, 609–642.
Brooks, R. M. y Schmitt. K. (2009). The Contraction Mapping Principle and Some Applications. Electronic journal of differential equations: Monograph.
Caicedo, J. F. (2005). Cálculo Avanzado, Universidad Nacional de Colombia, Bogotá.
Caicedo, J. F. y Castro, A. (1997). A Semilinear Wave Equation with Derivative of Nonlinearity Containing Multiple Eigenvalues of Infinite Multiplicity. Contemporary Mathematics: 208.
Iorio, R. y Magalhaes, V. (2001). Fourier Analysis and Partial Differential Equations. Cambridge Studies in Advanced Mathematicas.
Kim, J. (2009) Infinitely Many Periodic Solutions of Nonlinear Wave Equations on S^n. Electronic Journal of Differential Equations. 17, 95-105.
Kung-Ching, C. (2005) Methods in Nonlinear Analyisis. Springer-Verlag, Berlin.
Rudin, W. (1981). Real and Complex Analysis. McGraw Hill International, Bogotá.
Sanjuán, A. (2015). Membranas Vibrantes. Tesis de Doctorado, Universidad Nacional de Colombia.
Shecter, M. (2001). Periodic Solutions of a Semilinear Higher Dimensional Wave Equations. Chaos Solitons & Fractals. 12, 1029–1034.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.