A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science

Authors

Keywords:

. (en).

Downloads

Abstract (en)

A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science

References

L. Abualigah, M. A. Elaziz, A. M. Khasawneh, M. Alshinwan, R. A. Ibrahim, M. A. A. Al-qaness, S. Mirjalili,

P. Sumari, and A. H. Gandomi, “Meta-heuristic optimization algorithms for solving real-world mechanical engineering

design problems: a comprehensive survey, applications, comparative analysis, and results,” Neur. Comp.

App., vol. 34, no. 6, pp. 4081–4110, Jan. 2022. 1

R. Sioshansi and A. J. Conejo, Optimization in engineering. Ney York, NY, USA: Springer, 2017. 1

A. Kumar, G.Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and S. Das, “A test-suite of non-convex constrained

optimization problems from the real-world and some baseline results,” Swarm Evol. Comp., vol. 56, p. 100693,

Aug. 2020. 1

M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic algorithms: A comprehensive review,” in

Computational intelligence for multimedia big data on the cloud with engineering applications. Amsterdam,

Netherlands: Elsevier, 2018, pp. 185–231. 1

C. Venkateswarlu, “A metaheuristic tabu search optimization algorithm: Applications to chemical and environmental

processes,” in Optimization Problems in Engineering [Working Title]. IntechOpen, jun 2021. 1

J. O. Agushaka and A. E. Ezugwu, “Initialisation Approaches for Population-Based Metaheuristic Algorithms:

A Comprehensive Review,” App. Sci., vol. 12, no. 2, p. 896, jan 2022. 1

K. Dahal, S. Remde, P. Cowling, and N. Colledge, “Improving metaheuristic performance by evolving a variable

fitness function,” in Evolutionary Computation in Combinatorial Optimization. Springer Berlin Heidelberg,

, pp. 170–181. 1

S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia

Tools and Applications, vol. 80, no. 5, pp. 8091–8126, oct 2020. 2

A. B. Gabis, Y. Meraihi, S. Mirjalili, and A. Ramdane-Cherif, “A comprehensive survey of sine cosine algorithm:

variants and applications,” Artificial Intelligence Review, vol. 54, no. 7, pp. 5469–5540, jun 2021. 2

Y. Zhang, Z. Jin, and S. Mirjalili, “Generalized normal distribution optimization and its applications in parameter

extraction of photovoltaic models,” Energy Conversion and Management, vol. 224, p. 113301, nov 2020. 2

A. Biswas, K. K. Mishra, S. Tiwari, and A. K. Misra, “Physics-inspired optimization algorithms: A survey,”

Journal of Optimization, vol. 2013, pp. 1–16, 2013. 2

S. Q. Salih and A. A. Alsewari, “A new algorithm for normal and large-scale optimization problems: Nomadic

people optimizer,” Neural Computing and Applications, vol. 32, no. 14, pp. 10 359–10 386, oct 2019. 2

How to Cite

APA

Montoya, O. D. ., Molina-Cabrera, A., & Gil-González, W. . (2022). A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ingeniería, 27(3), e19815. https://doi.org/10.14483/23448393.19815

ACM

[1]
Montoya, O.D. , Molina-Cabrera, A. and Gil-González, W. 2022. A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ingeniería. 27, 3 (Aug. 2022), e19815. DOI:https://doi.org/10.14483/23448393.19815.

ACS

(1)
Montoya, O. D. .; Molina-Cabrera, A.; Gil-González, W. . A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ing. 2022, 27, e19815.

ABNT

MONTOYA, O. D. .; MOLINA-CABRERA, A.; GIL-GONZÁLEZ, W. . A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ingeniería, [S. l.], v. 27, n. 3, p. e19815, 2022. DOI: 10.14483/23448393.19815. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/19815. Acesso em: 26 sep. 2022.

Chicago

Montoya, Oscar Danilo, Alexander Molina-Cabrera, and Walter Gil-González. 2022. “A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science”. Ingeniería 27 (3):e19815. https://doi.org/10.14483/23448393.19815.

Harvard

Montoya, O. D. ., Molina-Cabrera, A. and Gil-González, W. . (2022) “A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science”, Ingeniería, 27(3), p. e19815. doi: 10.14483/23448393.19815.

IEEE

[1]
O. D. . Montoya, A. Molina-Cabrera, and W. . Gil-González, “A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science”, Ing., vol. 27, no. 3, p. e19815, Aug. 2022.

MLA

Montoya, O. D. ., A. Molina-Cabrera, and W. . Gil-González. “A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science”. Ingeniería, vol. 27, no. 3, Aug. 2022, p. e19815, doi:10.14483/23448393.19815.

Turabian

Montoya, Oscar Danilo, Alexander Molina-Cabrera, and Walter Gil-González. “A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science”. Ingeniería 27, no. 3 (August 12, 2022): e19815. Accessed September 26, 2022. https://revistas.udistrital.edu.co/index.php/reving/article/view/19815.

Vancouver

1.
Montoya OD, Molina-Cabrera A, Gil-González W. A Possible Classification for Metaheuristic Optimization Algorithms in Engineering and Science. Ing. [Internet]. 2022Aug.12 [cited 2022Sep.26];27(3):e19815. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/19815

Download Citation

Visitas

7

Dimensions


PlumX


Downloads

Download data is not yet available.