DOI:
https://doi.org/10.14483/22484728.14681Publicado:
2019-02-05Número:
Vol. 13 Núm. 1 (2019)Sección:
Visión InvestigadoraOptimization of fuzzy controllers for a radial distribution network
Optimización de controladores fuzzy para una red de distribución
Palabras clave:
Control, Distribution, Energy, Fuzzy, Optimization (en).Palabras clave:
Control, Distribución, Energía, Difuso, Optimización (es).Descargas
Resumen (en)
Energy distribution systems present alterations in the voltage profile in their nodes when distributed generation elements are installed. As a consequence, tension can be risen in a level beyond the admissible. This paper presents the optimization to three fuzzy controllers located in a distribution network with radial topology. The optimization of each controller is performed using the maximum descent algorithm, which is separately carried out; thus, having a distributed approach. The interaction between generators is considered to perform this process; the results show that the adjustment of the controllers is achieved
Resumen (es)
Los sistemas de distribución de energía presentan alteraciones en el perfil de tensiones de sus nodos cuando se instalan elementos de generación distribuida, haciendo que en algunos nodos se eleve la tensión, la cual puede llegar a estar por encima de lo admisible. En este documento, se propone la optimización de tres controladores difusos para generadores distribuidos localizados en una red de energía. La optimización de cada controlador se lleva a cabo mediante el algoritmo de máximo descenso, que se utiliza por separado, teniendo así un enfoque distribuido. Para realizar este proceso se considera la interacción entre los generadores, cuyos resultados muestran que se logra el ajuste de los controladores
Referencias
S. Mathew, “Wind Energy, Fundamentals, Resource Analysis and Economics’’, Berlin, Germany: Springer-Verlag, 2006. https://doi.org/10.1007/3-540-30906-3.
S. Heier, “Grid Integration of Wind Energy Conversion Systems’’, Germany: John Wiley & Sons, 2014. https://doi.org/10.1002/9781118703274.
A. Khatamianfar, M. Khalid, A. V. Savkin and V. G. Agelidis, “Improving Wind Farm Dispatch in the Australian Electricity Market with Battery Energy Storage Using Model Predictive Control”, IEEE Transactions on Sustainable Energy, vol. 4, no. 3, 2013, pp. 745-755. https://doi.org/10.1109/TSTE.2013.2245427.
S. Teleke, M. E. Baran, A. Q. Huang, S. Bhattacharya and L. Anderson, “Control Strategies for Battery Energy Storage for Wind Farm Dispatching”, IEEE Transactions on Energy Conversion, vol. 24, no. 3, 2009, pp. 725-732. https://doi.org/10.1109/TEC.2009.2016000.
X. Y. Wang, D. M. Vilathgamuwa and S. S. Choi, “Determination of battery storage capacity in energy buffer for wind farm”, IEEE Transactions on Energy Conversion, vol. 23, no. 3, 2008, pp. 868-878. https://doi.org/10.1109/TEC.2008.921556.
H. Holttinen and R. Hirvonen, “Power system requirements for wind power”, New York: John Wiley & Sons, pp. 143-167, 2005. https://doi.org/10.1002/0470012684.ch8.
C. Han, A. Q. Huang, M. E. Baran, S. Bhattacharya, W. Litzenberger, L. Anderson, A. L. Johnson and A.-A. Edris, “STATCOM impact study on the integration of a large wind farm into a weak loop power system”, IEEE Transactions Energy Conversion, vol. 23, no. 1, 2008, pp. 226-233. https://doi.org/10.1109/TEC.2006.888031.
P. Lundsager and I. Barring-Gould, “Isolated systems with wind power”, Wind Power in Power Systems, New York: John Wiley & Sons, pp. 299-329, 2005.
S. Kumar, S. Kumar, S. Giri and E. L. Ramesh, “A Review of Voltage Control Technique of Grid Connected Distributed Generations”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 3, no. 1, 2014, pp. 1565-1571.
P. U. Reddy, S. Sivanagaraju and P. Sangameswararaju, “Impact of voltage regulators in unbalanced radial distribution systems using Particle Swarm Optimization”, International Journal of Advances in Engineering & Technology, vol. 2, no. 1, 2012, pp. 129-138.
K. L. Anaya, M. G. Pollitt, “Distributed Generation: Opportunities for Distribution Network Operators, Wider Society and Generators”, 2015. [Online]. Available: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1505.pdf.
C. Sreenivasulu, G. Madhusudhana Rao and B. V. Sanker Ram, “Reliable Load Flow Solution for Controlling Power Network by FACTS Devices”, International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 1, 2013.
K. Krushna Murthy, S. V. Jaya Ram Kumar, “Three-Phase Unbalanced Radial Distribution Load Flow Method”, International Refereed Journal of Engineering and Science (IRJES), vol. 1, no. 1, 2012.
G. Díaz, J. Gómez and J. Coto, “Direct Backward/Forward Sweep Algorithm for Solving Load Power Flows in AC Droop-Regulated Microgrids”, IEEE Transactions on Smart Grid, vol. 7, no. 5, 2016. https://doi.org/10.1109/TSG.2015.2478278.
H. Espitia, G. Díaz and S. Díaz, “Optimización de controladores PI discretos utilizando algoritmos PSO para la regulación de voltaje en una red de distribución”, Congreso Internacional de computación Colombia - México (CICOM), 2017.
F. Van Den Bergh, “An analysis of particle swarm optimizers’’, thesis Ph.D. University of Pretoria, South Africa, 2001.