Aplicaciones de mezclas de biopolímeros y polímeros sintéticos: Revisión bibliográfica - Applications of blends of biopolymers and synthetic polymers: Bibliographic review

Lady Joana Rodríguez-Sepúlveda, Carlos Eduardo Orrego-Alzate


Corrientemente los biopolímeros son biodegradables, frágiles, hidrofílicos y tienen baja resistencia térmica, lo que ha limitado su aplicación comercial. En contraste, los polímeros sintéticos o derivados de recursos no renovables, generalmente de menor costo y de limitada o mínima biodegradabilidad, tienen buenas características mecánicas y térmicas. La mezcla de biopolímeros y polímeros sintéticos proporciona materiales con propiedades intermedias y costos razonables para ciertos usos. Este artículo es una revisión bibliográfica sobre las principales aplicaciones reportadas recientemente para las más importantes mezclas de biopolímeros y polímeros sintéticos biodegradables. La búsqueda de literatura se realizó con la herramienta “Tree of Science” y de manera narrativa. Los resultados mostraron que las mezclas de polímeros alifáticos y polisacáridos son las más usadas en aplicaciones de ingeniería de tejidos biológicos, liberación controlada de medicamentos y en la industria de empaques. 

Palabras clave

Aplicaciones; Biopolímero; Biodegradable; Mezcla; Polímero sintético

Texto completo:



Ahmed, T. A., & El-Say, K. M. (2014). Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sciences, 110(1), 35-43.

Alcântara, A. C. S., Darder, M., Aranda, P., Ayral, A., & Ruiz-Hitzky, E. (2016). Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of Applied Polymer Science, 133(2), n/a-n/a.

Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270.

Baheiraei, N., Yeganeh, H., Ai, J., Gharibi, R., Ebrahimi-Barough, S., Azami, M., Baharvand, H. (2015). Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering. Journal of Biomedical Materials Research Part A, 103(10), 3179-3187.

Bio_Plastics, (2016). Bio-Plastics. Recuperado de http://www.bio-plastics.org/

Brahatheeswaran Dhandayuthapani, Y. Y., Toru Maekawa, a., & Kumar, D. S. (2011). Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011, 19.

Brinson, H. F., & Brinson, L. C. (2015). Characteristics, Applications and Properties of Polymers Polymer Engineering Science and Viscoelasticity: An Introduction (pp. 57-100). Boston, MA: Springer US.

Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197.

Cascone, M. G., Barbani, N., P.Giusti, C. C., Ciardelli, G., & Lazzeri, L. (2001). Bioartificial polymeric materials based on polysaccharides. Journal of Biomaterials Science, Polymer Edition, 12(3), 267-281.

Cascone, M. G., Sim, B., & Sandra, D. (1995). Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials, 16(7), 569-574.

Chen, Q., Liang, S., & Thouas, G. A. (2013). Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3–4), 584-671.

Cinelli, P., Chiellini, E., & Imam, S. H. (2008). Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources. Journal of Applied Polymer Science, 109(3), 1684-1691.

Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780-792.

Dai, N. T., Williamson, M. R., Khammo, N., Adams, E. F., & Coombes, A. G. A. (2004). Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials, 25(18), 4263-4271.

Elizalde-Peña, E. A., Flores-Ramirez, N., Luna-Barcenas, G., Vásquez-García, S. R., Arámbula-Villa, G., García-Gaitán, B., . . . González-Hernández, J. (2007). Synthesis and characterization of chitosan-g-glycidyl methacrylate with methyl methacrylate. European Polymer Journal, 43(9), 3963-3969.

Europe (2015). Plastics -the facts 2014/2015 An analysis of European plastics production, demand and waste data. ecuperado de http://www.plasticseurope.org/

European Bioplastics. (2016). Recuperado de http://www.european-bioplastics.org/

Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H., & Ramakrishna, S. (2008). Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34), 4532-4539.

Giusti, P., Lazzeri, L., Cascone, M. G., Barbani, N., & Cristallini, C. (1995). Bioartificial Polymeric Materials: Natural and Synthetic World Joining in Biomaterials Research. In P. N. Prasad, J. E. Mark, & T. J. Fai (Eds.), Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities (pp. 563-569). Boston, MA: Springer US.

Gonçalves, F., Bentini, R., Burrows, M., Carreira, A., Kossugue, P., Sogayar, M., & Catalani, L. (2015). Hybrid Membranes of PLLA/Collagen for Bone Tissue Engineering: A Comparative Study of Scaffold Production Techniques for Optimal Mechanical Properties and Osteoinduction Ability. Materials, 8(2), 408.

Goonoo, N., Bhaw-Luximon, A., Bowlin, G. L., & Jhurry, D. (2013). An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polymer International, 62(4), 523-533.

Gourmelon, G. (2015). Global Plastic Production Rises, Recycling Lags. New Worldwatch Institute analysis explores trends in global plastic consumption and recycling. Recuperado de http://www.worldwatch.org/

Gupta, K. M. (2014). Engineering Materials: Research, Applications and Advances: Taylor & Francis. FL, U.S

Hamad, K., Kaseem, M., Ko, Y. G., & Deri, F. (2014). Biodegradable polymer blends and composites: An overview. Polymer Science Series A, 56(6), 812-829.

Haq, M., Burgueño, R., Mohanty, A. K., & Misra, M. (2008). Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Composites Science and Technology, 68(15–16), 3344-3351.

Hassan, C. M., & Peppas, N. A. (2000). Cellular PVA hydrogels produced by freeze/thawing. Journal of Applied Polymer Science, 76(14), 2075-2079.

He, Z., & Xiong, L. (2012). Evaluation of Physical and Biological Properties of Polyvinyl Alcohol/Chitosan Blend Films. Journal of Macromolecular Science, Part B, 51(9), 1705-1714.

Herdman, R. C. (1993). Biopolymers Making Materials Nature's Way. DIANE, 1-6.

Hesselbach, J., & Herrmann, C. (2011). Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th, 2011: Springer Berlin Heidelberg.

Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., . . . Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers, 90(4), 1757-1763.

Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3(10), 589-601.

Isabelle Vroman, & Tighzert, L. (2009). Biodegradable Polymers. Materials, 2(2), 307-344.

Jain, R., Shah, N. H., Malick, A. W., & Rhodes, C. T. (1998). Controlled Drug Delivery by Biodegradable Poly(Ester) Devices: Different Preparative Approaches. Drug Development and Industrial Pharmacy, 24(8), 703-727.

Kahar, A. W. M., Ismail, H., & Abdul Hamid, A. (2015). The correlation between crosslink density and thermal properties of high-density polyethylene/natural rubber/thermoplastic tapioca starch blends prepared via dynamic vulcanisation approach. Journal of Thermal Analysis and Calorimetry, 123(1), 301-308.

Kamoun, E. A., Chen, X., Mohy Eldin, M. S., & Kenawy, E.-R. S. (2015). Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 8(1), 1-14.

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32(2), 501-529.

Katarzyna Leja*, & Lewandowicz, G. (2010). Polymer Biodegradation and Biodegradable Polymers – a Review Polish Journal of Environmental Studies, 19(2), 255-266.

Kumbar, S. G., James, R., Nukavarapu, S. P., & Laurencin, C. T. (2008). Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical Materials, 3(3), 034002.

Kusleika, R., & Stupp, S. I. (1983). Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces. Journal of Biomedical Materials Research, 17(3), 441-458.

Lambert, S. (2015). Biopolymers and Their Application as Biodegradable Plastics. In C. V. Kalia (Ed.), Microbial Factories: Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 (pp. 1-9). New Delhi: Springer India.

Lee, K. E., Morad, N., Teng, T. T., & Poh, B. T. (2012). Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal, 203, 370-386.

Li, J., Zivanovic, S., Davidson, P. M., & Kit, K. (2010). Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydrate Polymers, 79(3), 786-791.

Li, M., Mondrinos, M. J., Chen, X., Gandhi, M. R., Ko, F. K., & Lelkes, P. I. (2006). Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Journal of Biomedical Materials Research Part A, 79A(4), 963-973.

Liang, J. F., Li, Y. T., & Yang, V. C. (2000). Biomedical application of immobilized enzymes. Journal of Pharmaceutical Sciences, 89(8), 979-990.

Lutolf, M. P., & Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech, 23(1), 47-55.

Mahoney, C., Conklin, D., Waterman, J., Sankar, J., & Bhattarai, N. (2016). Electrospun Nanofibers of Poly(ε-caprolactone)/Depolymerized Chitosan for Respiratory Tissue Engineering Applications. Journal of Biomaterials Science, Polymer Edition, 1-21.

Majidnia, Z., & Idris, A. (2015). Evaluation of cesium removal from radioactive waste water using maghemite PVA–alginate beads. Chemical Engineering Journal, 262, 372-382.

Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., . . . Reis, R. L. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of The Royal Society Interface, 4(17), 999-1030.

Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., & Kundu, P. P. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. International Journal of Biological Macromolecules, 72, 640-648.

Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8–9), 762-798.

No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. Journal of Food Science, 72(5), R87-R100.

Orrego A, C. E. (2015). Alternativas innovadoras para la agregación de valor a las frutas colombianas. (Vol. 1). Editorial Universidad Nacional de Colombia, Manizales, Colombia.

Ozdil, D., & Aydin, H. M. (2014). Polymers for medical and tissue engineering applications. Journal of Chemical Technology & Biotechnology, 89(12), 1793-1810.

P.C. Lee, L.L.H. Huang, L.W. Chen, K.H. Hsieh, & Tsai, C. L. (1996). Effect of forms of collagen linked to polyurethane on endothelial cell growth. J Biomed Mater Res, 32, 645-653.

Patrício, T., Domingos, M., Gloria, A., & Bártolo, P. (2013). Characterisation of PCL and PCL/PLA Scaffolds for Tissue Engineering. Procedia CIRP, 5, 110-114.

Pillai, O., & Panchagnula, R. (2001). Polymers in drug delivery. Current Opinion in Chemical Biology, 5(4), 447-451.

Precio Petróleo. (2009/2016). Recuperado de http://www.preciopetroleo.net/

Ramaraj, B. (2007). Crosslinked poly(vinyl alcohol) and starch composite films: Study of their physicomechanical, thermal, and swelling properties. Journal of Applied Polymer Science, 103(2), 1127-1132.

Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10–11), 1653-1689.

Robledo Giraldo, S., Osorio Zuluaga, G. A., & López Espinosa, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Revista Vinculus, 11(2), 6-16.

Rogovina, S. Z., & Vikhoreva, G. A. Polysaccharide-based polymer blends: Methods of their production. Glycoconjugate Journal, 23(7), 611-618.

Sadi, R. K., Kurusu, R. S., Fechine, G. J. M., & Demarquette, N. R. (2012). Compatibilization of polypropylene/ poly(3-hydroxybutyrate) blends. Journal of Applied Polymer Science, 123(6), 3511-3519.

Sahoo, S., Sasmal, A., Nanda, R., Phani, A. R., & Nayak, P. L. (2010). Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug. Carbohydrate Polymers, 79(1), 106-113.

Sahoo, S., Sasmal, A., Sahoo, D., & Nayak, P. (2010). Synthesis and characterization of chitosan-polycaprolactone blended with organoclay for control release of doxycycline. Journal of Applied Polymer Science, 118(6), 3167-3175.

Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science, 36(9), 1254-1276.

Soroudi, A., & Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49(10), 2839-2858.

Srivastava, G., Roy, S., & Kayastha, A. M. (2015). Immobilisation of Fenugreek β-amylase on chitosan/PVP blend and chitosan coated PVC beads: A comparative study. Food Chemistry, 172, 844-851.

Tanase, C. E., & Spiridon, I. (2014). PLA/chitosan/keratin composites for biomedical applications. Materials Science and Engineering: C, 40, 242-247.

Tang, S., Zou, P., Xiong, H., & Tang, H. (2008). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72(3), 521-526.

Tang, X. Z., Kumar, P., Alavi, S., & Sandeep, K. P. (2012). Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Critical Reviews in Food Science and Nutrition, 52(5), 426-442.

Thanpitcha, T., Sirivat, A., Jamieson, A. M., & Rujiravanit, R. (2006). Preparation and characterization of polyaniline/chitosan blend film. Carbohydrate Polymers, 64(4), 560-568.

Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78.

Torres-Huerta, A. M., Palma-Ramírez, D., Domínguez-Crespo, M. A., Del Angel-López, D., & de la Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal, 61, 285-299.

Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2009). Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules, 45(4), 372-376.

Van den Broek, L. A. M., Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237-242.

Venugopal, J. R., Low, S., Choon, A. T., Kumar, A. B., & Ramakrishna, S. (2008). Nanobioengineered Electrospun Composite Nanofibers and Osteoblasts for Bone Regeneration. Artificial Organs, 32(5), 388-397.

Vroman, I., & Tighzert, L. (2009). Biodegradable Polymers. Materials, 2(2), 307.

Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208-221.

Yang, C., Hillas, P. J., Báez, J. A., Nokelainen, M., Balan, J., Tang, J., . . . Polarek, J. W. (2012). The Application of Recombinant Human Collagen in Tissue Engineering. BioDrugs, 18(2), 103-119.

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602.

Zain, N. A. M., Suhaimi, M. S., & Idris, A. (2011). Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochemistry, 46(11), 2122-2129.

Zeeshan Sheikh, Shariq Najeeb, Zohaib Khurshid, Vivek Verma, Haroon Rashid, & Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, 8(9), 5744-5794.

Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451.

Zhang, Y., Chan, H. F., & Leong, K. W. (2013). Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 65(1), 104-120.

DOI: https://doi.org/10.14483//udistrital.jour.RC.2016.25.a9

 All articles published by Revista Científica are licensed under the Attribution-NonCommercial-ShareAlike 4.0 This license lets others remix, tweak, and build upon your work non-commercially, as long as they credit you and license their new creations under the identical terms.

Resultado de imagen para CC BY-NC-SA