DOI:
https://doi.org/10.14483//udistrital.jour.RC.2016.25.a6Published:
08/31/2016Issue:
Vol. 25 No. 2 (2016): May-August 2016Section:
Science and EngineeringEpistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica
Epistemological experience in developing of biomolecular technology for immunogene therapy strategy
Keywords:
antisens, triple helix, IGF-I, glioma, CD8 (en).Keywords:
antisentido, triple hélice, IGF-I, glioma, CD8 (es).Downloads
Abstract (es)
Unos de los retos científicos de los últimos 40 años, ha sido la búsqueda de la herramienta para el tratamiento del tumor cerebral, el glioblastoma, mortales en el 100% de los casos, utilizando nuestro conocimiento de la evolución, la química de las proteínas, la genética, la biología molecular y la inmunología. Una estrategia eficiente enfocada hacia el factor de crecimiento IGF-I presente en el desarrollo tumoral, fue establecida mediante la construcción de vectores expresando el IGF-I antisentido ARN o el IGF-I ARN formando ARN-ADN triple hélice. Estos vectores introducidos en las células cancerosas in vitro, permiten detener por completo la síntesis de IGF-I en la traducción o a nivel de la transcripción respectivamente. Mientras la inyección in vivo, inducen efecto antitumoral inmune (TCD8+) acompañado de aumento de la supervivencia media de los pacientes. La primera tesis en Colombia que describe la tecnología utilizada, fue presentada en la Universidad Distrital, en febrero de 2016.
Abstract (en)
We have been faced with a 40 year long challenge: how to establish tools that can be applied in the treatment of brain tumor - glioblastoma (100% fatal) - using our knowledge of evolution, chemistry of proteins, genetics, molecular biology and immunology. An efficient strategy targeting growth factor IGF-I, present in tumor development, was established by construction of vectors expressing either IGF-I antisense RNA or IGF-I RNA forming RNA-DNA triple helix. The vectors introduced in the cancer cells in vitro, enable to completely stop the synthesis of IGF-I: on translation or transcription level, respectively. When injected in vivo, these cells induce an immune anti-tumor effect (CD8+) accompanied by increase of the median survival of patients. The first thesis in Colombia describing the used technology, was presented in Distrital University in February 2016.
References
Aggarwal, B., Schwarz, L., Hogan, M. y Rando, R. (1996). Triple helix forming oligodeoxyribonucleotides
targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF dependent
growth of human glioblastoma tumor cells. Cancer Research, 56, 5156-5164.
http://cancerres.aacrjournals.org/
Andrews, D.W., Resnicoff, M., Flanders, A.E., Kenyon, L., Curtis, M., Merli, G., et al.(2001).
Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against
the insulin-like growth factor type I receptor in malignant astrocytomas. Journal of Clinical
Oncology, 19, 2189-2200. http://www.asco.org/press-center/journal-clinical-oncology
Ardourel, M-Y., Blin, M., Moret, J-L., Dufour, T., Duc, H.T., Hevor, T., et al. (2007). A new
putative target for antisense gene therapy of glioma: glycogen synthetase. Cancer Biology and
Therapy, 6(5), 719-723. http://dx.doi.org/10.4161/cbt.6.5.4232
Baserga R. (2005). The Insulin-like Growth Factor-I receptor as a target for cancer therapy.
Expert Opinion in Therapy Targets, 9, 753-768. http://dx.doi.org/10.1517/ 14728222.9.4.753
Fonteneau JF, Larsson M, Bhardwaj N. (2002): Interactions between dead cells and dendritic
in the induction of antiviral CTL responses. Current Opinion in Immunology, 14, 471-477.
http://dx.doi.org/10.1016/j.physletb.2010.09.059
Beckner ME, Gobbel GT, Abounader, R. Burovic F, Agostino NR, Laterra J, et al.(2005).
Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of
PI3K and gluconeogenesis. Laboratory Investigation, 85(12), 1457-1470.
http://dx.doi.org/10.1097/01.lab
Berezikov E, Thuemmler F, van Laake LW, et al. (2006). Diversity of microRNAs in human
and chimpanzee brain. Nature Genetics, 38(12):1375-7. http://www.nature.com/ng/
Blanchet, O., Bourge, J.F., Zinszner, H., Israel, A., Kourilsky, P. y Dausset, J. et al.(1992). Altered
binding of regulatory factors to HLA class I enhancer sequence in human tumor cell
lines lacking class I antigen expression. Proceeding of National Academy of Science USA,
(8):3488-349. http://dx.doi.org/10.1073/pnas.89.8.3488
Boado, R.J. (2005). RNA interference and nonviral targeted gene therapy of experimental brain
cancer. NeuroRx, 2(1), 139-150. https://www.neurorx.com/
Brooks, W.H., Latta, R.B. y Mahaley, M.S. (1981). Immunobiology of primary intracranial
tumors. Journal of Neurosurgery, 54, 331-337. http://dx.doi.org/10.3171/jns.1981.54.3.0331
Castillo T. (2016). Análisis de la expresión del gen IGF-I identificado como oncogén en
células de glioma de ratón parentales y transfectadas usando estrategia de terapia génica por
triple hélice y antisentido. Trabajo de grado. Universidad Distrital, Programa de Licenciatura
en Química (Trojan, J. y Ayala, A. et al.), 29 febrero 2016.
Cavazzana-Calvo, M., Hacein-Bey-Abina, S. y Fischer, A. (2010). Ten years of gene therapy:
thoughts and perspectives. Medecine Science (Paris), 26, 115-118.
http://dx.doi.org/10.1051/medsci/2010262115
Chappert P, Leboeuf M, Rameau P, Lalfer M, Desbois S, Liblau RS, et al. (2010). Antigen-
specific Treg impair CD8+ T-cell priming by blocking early T-cell expansion. European
Journal of Immunology, 40, 339-50. http://dx.doi.org/10.1002/eji.200839107
Caruso, G. y Caffo M. (2014). Antisense oligonucleotides in the treatment of cerebral gliomas.
Review of concerning patents. Recent Patents on CNS Drug Discovery, 9(1), 2-12.
http://dx.doi.org/10.2174/15748890978845.
Catuogno, S., Esposito, C.L., Quintavalle, C., Condorelli, G., de Franciscis, V. y Cerchia, L.
(2012). Nucleic acids in human glioma treatment: innovative approaches and recent results.
Journal of Signal Transduction, ID:735135. http://dx.doi.org/10.1155/2012/735135
Choi, B.D., Archer, G.E., Mitchell, D.A., Heimberger, A.B., McLendon, R.E., Bigner, D.D., et
al. (2009). EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathology,
(4), 713-723. doi:10.1111/j.1750-3639.2009.00318.x.
Corsten, M.F., Miranda, R., Kasmieh, R., Krishevsky, A.M., Weisslederer, R. y Shak, R.
(2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic
cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer
Research, 67(19), 8994-9000. http://cancerres.aacrjournals.org/
Costa, P.M., Cardoso, A.L., Mendonça, L.S., Serani, A., Custódia, C., Conceição, M. et al.
(2013). Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to
glioblastoma cells: a promising system for glioblastoma treatment. Moleculat Therapeutic
Nucleic Acids, 2: e100.doi:10.1038/mtna.2013.30.
Dias, N. y Stein, C.A. (2002). Basic concepts and antisense oligonucleotides mechanisms.
Molecular Cancer and Therapeutics, 1, 347-355.
http://mct.aacrjournals.org/site/misc/journal_ifora.xhtml
Dervan, P. (1992). Reagents for the site specific cleavage of megabase DNA. Nature, 359, 87-
http://dx.doi.org/10.1038/359087a0
Di Tomaso, T., Mazzoleni, S., Wang, E., Sovena, G., Clavenna, D., Franzin A, et al.(2010),
Immunobiological characterization of cancer stem cells isolated from glioblastoma patients.
Clinical Cancer Research, 16, 800-813. http://dx.doi.org/10.1158/1078-0432.CCR-09-2730
Dietrich, P.Y., Dutoit, V., Tran Thang, N.N. y Walker, P.R. (2010). T cell immunotherapy for
malignant glioma: toward a combined approach. Current Opinion in Oncology, 22(6), 604-610.
http://dx.doi.org/10.1097/CCO.0b013e32833dead8
Ellouk-Achard, S., Djenabi, S., De Oliveira, G.A., Dessay, G., Duc, H.T., Zoar, M. et al.
(1998). Induction of apoptosis in rat hepatoma cells by expression of IGF-I antisense cDNA.
Journal of Hepatology, 29, 807-818. http://dx.doi.org/10.1016/S0168-8278(98)80263-8
Fakhrai, H., Mantil, J.C., Liu, L., Lin, H., Mercola, D., Black, K.L., et al. (2006). Phase I
clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced
glioma. Cancer Gene Therapy, 13(12), 1052-1060. http://dx.doi.org/10.1038/sj.cgt.7700975
Fonteneau, J.F., Larsson, M., Bhardwaj, N. (2002). Interactions between dead cells and dendritic in the induction of antiviral CTL responses. Current Opinion in Immunology, 14, 471-477.
http://dx.doi.org/10.1016/j.physletb.2010.09.059
Gaffney, D.C., Soyer, H.P. y Simpson, F. (2014). The epidermal growth factor receptor in squamous cell carcinoma: An emerging drug target. Australasian Journal of Dermatology, 55(1), 24-34. http://dx.doi.org/10.1111/ajd
Giovannangeli, C. y Hélène, C. (1997). Progress in developments of triplex based strategies.
Antisense Nucleic Acid Drug Development, 7, 413-421. http://dx.doi.org/10.1002/anie
Gorlia, T., van den Bent, M.J., Hegi, M.E., Mirimanoff, R.O., Weller, M., Cairncross, J.G., et
al. (2008). Nomograms for predicting survival of patients with newly diagnose of glioblastoma:
prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncology,
(1), 29-38. http://dx.doi.org/10.1016/S1470-2045(07)70384-4
Green, P.J., Pines, O. y Inouye, M. (1986). The Role of Antisense RNA in Gene Regulation.
Annual Review of Biochemistry, 55, 569-597. http://www.annualreviews.org/journal/biochem
Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al.
(2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from
preclinical to phase I/II studies. Oligonucleotides, 17(2), 201-212.
Hau, P., Jachimczak, P. y Bogdahn, U. (2009). Treatment of malignant gliomas with TGF-
beta2 antisense oligonucleotides. Expert Review in Anticancer Therapy, 9(11), 1663-1674.
http://dx.doi.org/10.1586/era.09.138
Hau, P., Jachimczak, P., Schlaier, J., Bogdahn, U. (2011). TGF-β2 signaling in high-grade
gliomas. Current Pharmacology and Biotechnology, 12, 2150-2157. http://dx.doi.org/10.2174
Hegi, M. E., Diserens, A.C., Gorlia, T., Hamou, M.F., de Tribolet, N., Weller, M., et al. (2005).
MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal
of Medecine, 352, 997-1003. http://dx.doi.org/10.1056/NEJMoa043331
Hélène, C. (1994). Control of oncogene expression by antisense nucleic acid. European
Journal of Cancer, 30A, 1721-1726. http://dx.doi.org/10.1016/j.ejca.1994
Hutterer, M., Gunsilius, E. y Stockhammer, G. (2006). Molecular therapies for malignant
glioma. Wiener Medizinische Wochenschrift, 156(11-12), 351-363.
http://link.springer.com/journal/10354
Ilan J. (1993).Clinical trial: Gene therapy for human brain tumours using episome based
antisense cDNA transcription of Insulin like Growth Factor I. Proposal for a Phase One gene
therapy clinical study. Protocol NIH no 1602, Bethesda, Maryland, 1993, pp. 1-150.
Iwami, K., Natsume, A. y Wakabayashi, T. (2010). Gene therapy for high-grade glioma.
Neurologica Medicina Chirurgica (Tokyo), 50, 727-736. http://dx.doi.org/10.2176/nmc
Jansen, M., Van Shaik, F.M.A., Ricker, A.T., Bullock, B., Woods, D.E., Gabbay , K.H. et al ( 1983). Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature, 306, 609-611. http://dx.doi.org/10.1038/306609a0
Kalman, B., Szep, E., Garzuly, F. y Post, D.E. (2013). Epidermal growth factor receptor as a
Therapeutic target in glioblastoma. Neuromolecular Medecine, 15(2), 420-434.
doi:10.1007/s12017-013-8229-y
Kiess, W., Lee, L., Graham, D.E., Greenstein, L., Tseng, L.Y., Rechler, M.M. y Nissley, S.P. (1989). Rat C6 glial cells synthesize insulin-like growth factor I (IGF-I) and express IGF-I receptors and IGF-II/mannose 6-phosphate receptors. Endocrinology, 124, 1727–1736.
Kjaergaard, J., Wang, L., Kuriyama, H., Shu, S. y Plautz, G.E. (2005). Active immunotherapy
for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines.
Journal of Neurosurgery, 103,156-164. http://thejns.org/
Lasfarge-Frayssinet, C., Duc, H.T., Sarasin, A., Frayssinet, C., Anthony, D.D., Guo Y, et al.
(1997). Antisense IGF-I transfer into a rat hepatoma cell line inhibits tumorigenesis by
modulatig MHC-I. Cancer Gene Therapy, 4(5), 276-285.
http://dx.doi.org/10.1038/sj.cgt.7700975
Le Corre, S.S., Berchel, M., Belmadi, N., Denis, C., Haelters, J.P., Le Gall, T. et al. (2014).
Cationic lipophosforamidates with two different lipid chains: synthesis and evaluation as gene
carriers. Organic & Biomolecular Chemistry,12, 1463-1474.
http://dx.doi.org/10.1039/c3ob42270d
Le Gall, T., Loizeau, D., Picquet, E., Carmoy, N., Yaouanc, J.J., Burel-Deschamps, L., et al.
(2010). A novel cationic lipophosphoramide with diunsaturated lipid chain synthesis:
physicochemical properties and transfection activities. Journal of Medical Chemistry,
, 1496-1508. http://dx.doi.org/10.1021/jm
Lemoine FM, Cherai M, Giverne C, Dimitri D, Rosenzwajg M, Trebeden-Negre H, et al.
(2009). Massive expansion of regulatory T-cells following interleukin 2 treatment during a
Phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. International Journal of Oncology, 235, 569-581. http://www.spandidos-publications.com/ijo
Li, Y., Jia, Q., Zhang, J., Han, L., Xu, D., Zhang, A. et al. (2010). Combination therapy with
Gamma Knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic
xenografts. Oncology Report, 23(6), 1585-1591.
Lo, H.W. (2010). Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for
malignant gliomas. Current Cancer Drug Targets, 10, 840-848.
http://dx.doi.org/10.2174/156800910793357970
Ly, A., Bouchaud, A., Henin, D., Sanson, M., Delattre, J-Y., Pan Y., et al.(2000). Expression of
IGF-I in glioma cells is associated with change in both immunogenicity and apoptosis.
Neuroscience Letters, 281, 13-16. http://dx.doi.org/10.1016/ 0304-3940(96)12770-1
Ly, A., Duc, H.T., Kalamarides, M., Pan, Y., Shevelev, A., François, J-C, et al. (2001). Human glioma cells transformed by IGF-I triple-helix technology show immune and apoptotic
characteristics determining cell selection for gene therapy of glioblastoma. Journal of Clinical
Pathology (Molecular Pathology), 54(4),230-239. http://dx.doi.org/10.1136/mp.54.4.230
Matthew, L., Saiter, B. y Bhardwag, N. (1998). Dendritic cells acquire antigen from apoptotic
cells and induce class I restricted CTL. Nature, 392, 86-89. http://dx.doi.org/10.1038/32183
Mayfield, C., Ebbinghaus, S., Gee, I., Jones, D., Rodu, B., Squibb, M., et al. (1994). Triplex
formation by the human Ha ras promoter inhibits Spl binding and in vitro transcription. Journal
of Biological Chemistry, 69, 18232 18238. http://dx.doi.org/10.1074/jbc.C113.543132
Migliorini, D., Dietrich, P.Y. y Walker, P.R. (2013). Maximizing output from current glioma
vaccine trials to construct robust next generation immunotherapies. Immunotherapy, 5, 1147-
http://dx.doi.org/10.2217/imt.13.115
Moro-Sibilot, D.M., Coudurier, M. y Lantuejou, S. (2010). Targeting Insulin-like Growth
Factors in the treatment of cancer. Review des Maladies Respiratoires, 27, 959-963.
http://www.sciencedirect.com/science/journal/07618425
Mosquera, C. J. y Castelblanco, O.L. (2015). El cambio didactico y la epistemiologia.
Revista Gondola, 10(1). http://dx.doi.org/10.14483/udistrital.jour.GDLA.2015.1.a00
Obrepalska, A., Kedzia, A., Trojan, J. y Gozdzicka-Jozefiak, A. (2003). Analysis of coding and promoter sequence of IGF-I gene in children with growth disorders presenting normal level of growth hormone. Journal of Pediatric Endocrinology and Metabolism, 16(9): 1267-75; http://dx.doi.org/10.14740
Pai, S.I., Lin, Y.Y., Macaes, B., Meneshian, A., Hung, C.F. y Wu, T.C. (2006). Prospects of
RNA interference therapy for cancer. Gene Therapy, 13(6), 464-477.
http://www.genetherapyreview.com/gene-therapy-publications/journals
Pan, Q., Luo, X. y Chegini, N. (2007). Blocking neuropilin-1 function has an additive effect
with anti VEGF to inhibit tumor growth. Cancer Cell, 11(1), 53-67.
http://dx.doi.org/10.1016/j.ccr.2006.10.018
Pan, Y., Trojan, J., Guo, Y. y Anthony, D.D. (2013). Rescue of MHC-1 antigen processing
machinery by down-regulation in expression of IGF-I in human glioblastoma cells. PLoS
ONE, 8, ID:e58428. http://dx.doi.org/10.1007/s11936-00ç-0012-x
Piwecka, M., Rolle, K., Wyszko, E., Żukiel, R., Nowak, S., Barciszewska, M.Z., et al (2011).
Nucleic acid-based technologies in therapy of malignant gliomas. Current Pharmacological
Biotechnology, 12, 1805-1822. http://dx.doi.org/10.2174/138920111798377067
Pollak, M.N., Schernhammer, E.S. y Hankinson, S.E. (2004). Insulin-like growth factors and neoplasia. Nature Review Cancer, 4, 505–518. http://dx.doi.org/10.1038/nrc
Premkumar, D.R., Arnold, B., Jane, E.P. y Pollack, I.F. (2006): Synergistic interaction between
AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells.
Molecular Carcinogenesis, 45, 47-59. http://dx.doi.org/10.1002/mc.20152
Reardon, D.A., Quinn, J.A., Vredenburgh, J.J., Gururangan, S., Friedman, A.H., Desjardins,
A., et al. (2006). Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant
glioma. Clinical Cancer Research, 12, 860-886. http://dx
Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. y Rubin, R. (1994). Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are non tumorigenic and induce regression of wild-type tumors. Cancer Research,
, 2218–2222. http://cancerres.aacrjournals.org
Rodríguez, J.A., Galeano, L., Palacios, D.M., Gómez, C, Serrano, M.L., Bravo, M.M., et al.
(2012). Altered HLA class I and HLA-G expression is associated with IL-10 expression in
patients with cervical cancer. Pathobiology, 79,72-83. http://dx.doi.org/10.1159/000334089
Rubenstein, J.L., Nicolas, J.F. y Jacob, F. (1984). Nonsense RNA: a tool for specifically
inhibiting the expression of a gene in vivo. Compte Rendu d’Academie de Science Paris III,
, 271-274. http://dx.doi.org/10.1090/S0002-9947-1952-0051341-6
Sachdev, D. (2010). Targeting the type I Insulin-like Growth Factor system for breast cancer
therapy. Current Drug Targets, 11, 1121-1132.
http://dx.doi.org/10.2174/138945010792006816
Saji, M., Moriarty, J., Ban, T., Singer, D. y Kohn, L. (1992). Major Histocompatibility
Complex class I gene expression in rat thyroid cells is regulated by hormones, methimazole
and iodide as well as interferon. Journal of Clinical Endocrinology and Metabolism, 75(3),
-878. http://press.endocrine.org/loi/jcem
Scaggiante, B., Morassutti, C., Tolazzi, G., Michelutti, A., Baccarani, M. y Quadrifoglio, E.
(1994). Effect of unmodified triple helix forming oligodeoxyribonucleotide targeted to human
multidrug resistance gene mdrl in MDR cancer cells. FEBS Letters, 352, 380-384.
http://dx.doi.org/10.1016/0014-5793(94)00995-3
Schlingensiepen, K.H., Schlingensiepen, R., Steinbrecher, A., Hau, P., Bogdahn, U., Fischer-
Blass, B, et al. (2006). Targeted tumortherapy with the TGF-beta2 antisense compound AP
Cytokin Growth Factor Review, 17, 129-139.
http://dx.doi.org/10.1016/j.cytogfr.2005.09.002
Schlingensiepen, K.H., Fischer-Blass, B., Schmaus, S. y Ludwig, S. (2008). Antisense
therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development
against malignant tumors. Recent Results in Cancer Research, 177, 137-150.
http://dx.doi.org/10.1007/-978-3-540-71279-4-16
Schlingensiepen, K.H., Jaschinski, F., Lang, S.A., Moser, C., Geissler, E.K., Schlitt, H.J. et
al. (2011). Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in
pancreatic cancer. Cancer Science, 102(6), 1193-200. doi:10.1111/j.1349-7006.2011.01917.
Schwartz, R.H. (1992). Costimulation of T Iymphocytes: the role of CD28, CTLA-4 and
B7/BBI in interleukin-2 production and immunotherapy. Cell, 71:1065-1068.
http://dx.doi.org/10.1016/S0092-8674(05)80055-8
Shevelev, A., Burfeind, P., Schulze, E., Rininsland, F., Johnson, T., Trojan J., et al.(1997)
Potential triple helix mediated inhibition of IGF I gene expression significantly reduces
tumorigenicity of glioblastoma in an animal model. Cancer Gene Therapy, 4(2), 105 112.
http://dx.doi.org/10.1038/sj.cgt.7700975
Sia, K.C., Chong, W.K., Ho, I.A., Yulyana, Y., Endaya, B., Huynh. H, et al.(2010). Hybrid
Herpes Simplex virus/Epstein-Barr virus amplicon viral vectors confer enhanced transgene
expression in primary human tumors and human bone-marrow-derived mesenchymal stem
cells. Journal of Gene Medecine, 12, 848-858. http://dx.doi.org/10.1002/jgm.1506
Stupp, R. y Hottinger, A.F. (2008). Management of malignant glioma - Quo vadis?.
Onkologie, 31, 300-302. http://dx.doi.org/10.1159/000134024
Szpechcinski, A., Trzos, R., Jarocki, P. , Trojan, L.A., Oficjalska, K. , Junkiert, A. et al.
(2004). Presence of MHC-I in rat glioma cells expressing antisense IGF-I-Receptor RNA.
Roczniki Akademii Medycznej w Bialymstoku (Adances of Medical Science), 49(1), 98-104.
Thomas, T., Faaland, C., Gallo, M. y Thomas, T. (1999). Suppression of c myc oncogene.
Expression by a polyamine complexed triplex forming oligonucleotide in MCF 7 breast cancer
cells. Nucleic Acids Research, 23:3594-3599. http://dx.doi.org/10.1093/nar/23.17.3594
Trojan, J. y Uriel, J. (presentado para F. Jacob). (1979). Intracellular localisation of alphafeprotein and serum albumin in the central nervous system of the rat during fetal and post natal development. (in french). Compte Rendu d’Academie de Science, Paris, 289(15), 1157-1160.
Trojan, J., Uriel, J., Deugnier, M.A. y Gaillard, J. (1984). Immunocytochemical quantitative
study of alpha-fetoprotein in normal and neoplasic neural development. Developmental
Neuroscience, 6:251-59. http://dx.doi.org/10.1097/00001756-200307180-00016
Trojan, J., Blossey, B.K., Johnson, T., Rudin, S., Tykocinski, M., Ilan, Ju, et al.(1992). Loss of
tumorogenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of
insulin-like growth factor I. Proceeding of National Academy of Science USA, 89(11), 4874-
http://dx.doi.org/10.1073/pnas.93.7.2909
Trojan, J., Johnson, T.R., Rudin, S.D., Ilan, Ju., Tykocinski, M.L. y Ilan, J. (1993). Treatment
and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense Insulin like
Growth Factor I RNA. Science, 259, 94-97. http://www.sciencedirect.com
Trojan, J., Johnson, T., Rudin, S., Blossey, B., Kelley, K., Shevelev, A., et al. (1994). Gene
therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in
immunogenicity and differentiation. Proceeding of Nationall Academy of Science USA,
, 6088-6092. http://dx.doi.org/10.1073/pnas.93.7.2909
Trojan, J., Duc, H.T., Upegui Gonzalez, L., Hor, F., Guo, Y., Anthony, D.D., et al. (1996).
Presence of MHC¬-I and B 7 molecules in rat and human glioma cells expressing antisense
IGF I mRNA. Neuroscience Letters, 212, 9 12. http://dx.doi.org/10.1016/ 0304-
(96)12770-1
Trojan, L.A., Kopinski, P., Mazurek, A., Chyczewski, L., Ly, A., Jarocki, P., et al (2003). IGF-I Triple Helix Gene Therapy of Rat and Human Gliomas. Annales Academiae Medicae Bialostocensis (Roc Akad Med Bial), 48, 18-27. http://www.advms.pl/
Trojan, L.A., Ly, A., Kopinski, P., Ardourel, M-Y., Dufour, T., Duc, H.T., et al. (2006).
Antisense and triple helix anti IGF-I tumours vaccines - gene therapy of gliomas. International
Journal of Cancer Prevention, 2(4), 227-243. http://dx.doi.org/10.15430/JCP.
Trojan, J., Cloix, J-F., Ardourel, M-Y., Chatel, M., Anthony, D.D. (2007) Insulin-like
growth factor type 1 biology and targeting in malignant glioma. Neuroscience, 145, 795-
http://dx.doi.org/10.1016/ j.neuroscience.2007.01.021
Trojan, J., Ly, A., Wei, M.X., Kopinski, P., Ardourel, M.Y., Pan Y, et al. (2010). Antisense anti
IGF-I cellular therapy of malignant tumours: immune response in cancer patients. Biomedecine
& Pharmacotherapy, 64, 576-578. http://dx.doi.org/10.1016/j.physletb.2010.09.059.
Trojan, J., Pan, Y.X., Wei, M.X., Ly,A., Shevelev, A., Bierwagen M, et al. (2012). Methodology
for anti - gene anti IGF-I therapy of malignant tumours. Chemotherapy Research and Practice,
doi:10.1155/2012/721873. http://dx.doi.org/10.1155/2014/520701.
Trojan, J. y Briceño, I. (2013). IGF-I antisense and triple-helix gene therapy of glioblastoma.
In: T. Lichtor “Evolution of the Molecular Biology of Brain Tumors and the Therapeutic
Implications”, Ed. InTech, Vienna, Riyeka, Vol. 5, pp 149-166. ISBN 980-953-307-74
Trojan, A., Jay, L.M., Kasprzak, H., Anthony, D.D. y Trojan, J. (2014). Immunotherapy of
malignant tumors using antisense anti-IGF-I approach: case of glioblastoma. Journal of
Cancer Therapy, 5, 685-705. http://dx.doi.org/10.4236/jct.2014
Tsai, Y.J., Hu, C.C., Chu, C.C. y Imae, T. (2011). Intrinsically fluorescent PAMAM
dendrimer as gene carrier and nanoprobe for nucleic acids delivery: bioimaging and
transfection study. Biomacromolecules, 12, 4283-4290. http://dx.doi.org/10.1021/bm
Upegui-Gonzalez, L.C., Duc, H.T., Buisson, Y., Arborio, M., Lafarge-Frayssinet, C., Jasmin,
C., et al.(1998). Use of antisense strategy in the treatment of the hepatocarcinoma. Advances in
Experimental Medicine and Biology, 451, 35-42. http://dx.doi.org/10.4161
.doi.org/10.1158/1078-0432
Weintraub, H., Izant, J. y Harland, R. (1985). Antisense RNA as a molecular tool for genetic
analysis. Trends in Genetics, 1(1), 23-25. http://dx.doi.org/10.1016/S0168-9525
Wen, P.Y., Yung, W.K., Lamborn, K.R., Dahia, P.L., Wang, Y., Peng, B. et al. (2006). Phase
I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor
Consortium Study 99-08. Clinical Cancer Research, 12, 4899-4907.
http://dx.doi.org/10.1158/1078-0432.CCR- 06-0773
Wikipedia, free Encyclopedia – Gene therapy, history: 1990s, updated 2016
Wongkajornsilp, A., Ouyprasertkul, M., Sangruchi, T., Huabprasert, S., Pan, Y. y Anthony DD.
(2001). The analysis of peri-tumour necrosis following the subcutaneous implantation of
autologous tumor cells transfected with an episome transcribing an antisense IGF-I RNA in a
glioblastoma multiforme subject. Journal of Medical Association of Thai, 4(3), 740-747.
Yang, L., Lin, Z., Huang, Q., Lin, J., Chen, Z., Zhou, L. et al. (2011). Effect of vascular
endothelial growth factor on remodeling of C6 glioma tissue in vivo. Journal of Neuro-
Oncology, 103(1), 33-41.doi:10.1007/s11060-010-0356-9.
Zhang, A., Hao, J., Wang, K., Huang, Q., Yu K., Kang, C., et al. (2013). Down-regulation of
miR-106b suppresses the growth of human glioma cells. Journal of Neurooncology,
(2), 17989.doi: 10.1007/s11060-013-1061-2.
Zhang, J., Han, L., Zhang, A., Wang, Y., Yue, X., You, Y., et al. (2010). AKT2 expression is
associated with glioma malignant progression and required for cell survival and invasion.
Oncology Report, 24(1), 65-72
Zhu, C., Trabado, S., Fan, Y., Trojan, J., Lone, Y.C., Giron-Michel, J., et al. (2015).
Characterization of effector components from the humoral and cellular immune response
stimulated by melanoma cells exhibiting modified IGF-1 expression. Biomedicine &
Pharmacotherapy, 70, 53-57. doi: 10.1016/j.biopha.2015.01.002
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.