DOI:

https://doi.org/10.14483//udistrital.jour.RC.2016.25.a6

Publicado:

2016-08-31

Número:

Vol. 25 Núm. 2 (2016): mayo-agosto

Sección:

Ciencia e ingeniería

Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica

Epistemological experience in developing of biomolecular technology for immunogene therapy strategy

Autores/as

  • Tatiana Castillo Universidad Distrital Francisco José de Caldas.
  • Annabelle Trojan Fundación Universitaria Juan N. Corpas. Bogotá
  • Maria Claudia Noguera Instituto Nacional de Salud. Bogotá
  • Lina Manuela Jay Instituto Nacional de Salud. Bogotá
  • Cecilia Crane Instituto Nacional de Salud. Bogotá
  • Alexander Shevelev Moscow University. Moscow, Russia
  • Alvaro Alvarez Universidad de Cartagena
  • Heliodor Kasprzak Nicolas Copernic University. Torun, Polonia
  • Gonzalo Melo Instituto Nacional de Cancerología. Bogotá
  • Pedro Jose Penagos Instituto Nacional de Cancerología. Bogotá
  • Beatriz Helena Aristizabal Hospital Pablo Tobón Uribe. Medellín, Colombia
  • Ignacio Briceño Pontificia Universidad Javeriana. Bogotá
  • Adis Ayala Universidad Distrital Francisco José de Caldas. Bogotá
  • Huynh T. Duc Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia
  • Jerzy Trojan Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia

Palabras clave:

antisentido, triple hélice, IGF-I, glioma, CD8 (es).

Palabras clave:

antisens, triple helix, IGF-I, glioma, CD8 (en).

Descargas

Resumen (es)

Unos de los retos científicos de los últimos 40 años, ha sido la búsqueda de la herramienta para el tratamiento del tumor cerebral, el glioblastoma, mortales en el 100% de los casos, utilizando nuestro conocimiento de la evolución, la química de las proteínas, la genética, la biología molecular y la inmunología. Una estrategia eficiente enfocada hacia el factor de crecimiento IGF-I presente en el desarrollo tumoral, fue establecida mediante la construcción de vectores expresando el IGF-I antisentido ARN o el IGF-I ARN formando ARN-ADN triple hélice. Estos vectores introducidos en las células cancerosas in vitro, permiten detener por completo la síntesis de IGF-I en la traducción o a nivel de la transcripción respectivamente. Mientras la inyección in vivo,  inducen efecto antitumoral inmune (TCD8+) acompañado de aumento de la supervivencia media de los pacientes. La primera tesis en Colombia que describe la tecnología utilizada, fue presentada en la Universidad Distrital, en febrero de 2016.

Resumen (en)

We have been faced with a 40 year long challenge: how to establish tools that can be applied in the treatment of brain tumor - glioblastoma (100% fatal) - using our knowledge of evolution, chemistry of proteins, genetics, molecular biology and immunology. An efficient strategy targeting growth factor IGF-I, present in tumor development, was established by construction of vectors expressing either IGF-I antisense RNA or IGF-I RNA forming RNA-DNA triple helix. The vectors introduced in the cancer cells in vitro, enable to completely stop the synthesis of IGF-I: on translation or transcription level, respectively. When injected in vivo, these cells induce an immune anti-tumor effect (CD8+) accompanied by increase of the median survival of patients. The first thesis in Colombia describing the used technology, was presented in Distrital University in February 2016.

Biografía del autor/a

Annabelle Trojan, Fundación Universitaria Juan N. Corpas. Bogotá

Fundación Universitaria Juan N. Corpas. Bogotá

Alexander Shevelev, Moscow University. Moscow, Russia

Docente Moscow University.

Alvaro Alvarez, Universidad de Cartagena

Docente Universidad de Cartagena

Heliodor Kasprzak, Nicolas Copernic University. Torun, Polonia

Docente investigador Nicolas Copernic University

Gonzalo Melo, Instituto Nacional de Cancerología. Bogotá

Investigador

Pedro Jose Penagos, Instituto Nacional de Cancerología. Bogotá

Inestigador

Ignacio Briceño, Pontificia Universidad Javeriana. Bogotá

Docente Universidad Javeriana

Huynh T. Duc, Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia

Investigador, Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia

Jerzy Trojan, Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia

Institut National de la Santé et de la Recherche Médicale, Paul Brousse Hospital, Paris XI University, Francia

Referencias

Aggarwal, B., Schwarz, L., Hogan, M. y Rando, R. (1996). Triple helix forming oligodeoxyribonucleotides

targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF dependent

growth of human glioblastoma tumor cells. Cancer Research, 56, 5156-5164.

http://cancerres.aacrjournals.org/

Andrews, D.W., Resnicoff, M., Flanders, A.E., Kenyon, L., Curtis, M., Merli, G., et al.(2001).

Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against

the insulin-like growth factor type I receptor in malignant astrocytomas. Journal of Clinical

Oncology, 19, 2189-2200. http://www.asco.org/press-center/journal-clinical-oncology

Ardourel, M-Y., Blin, M., Moret, J-L., Dufour, T., Duc, H.T., Hevor, T., et al. (2007). A new

putative target for antisense gene therapy of glioma: glycogen synthetase. Cancer Biology and

Therapy, 6(5), 719-723. http://dx.doi.org/10.4161/cbt.6.5.4232

Baserga R. (2005). The Insulin-like Growth Factor-I receptor as a target for cancer therapy.

Expert Opinion in Therapy Targets, 9, 753-768. http://dx.doi.org/10.1517/ 14728222.9.4.753

Fonteneau JF, Larsson M, Bhardwaj N. (2002): Interactions between dead cells and dendritic

in the induction of antiviral CTL responses. Current Opinion in Immunology, 14, 471-477.

http://dx.doi.org/10.1016/j.physletb.2010.09.059

Beckner ME, Gobbel GT, Abounader, R. Burovic F, Agostino NR, Laterra J, et al.(2005).

Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of

PI3K and gluconeogenesis. Laboratory Investigation, 85(12), 1457-1470.

http://dx.doi.org/10.1097/01.lab

Berezikov E, Thuemmler F, van Laake LW, et al. (2006). Diversity of microRNAs in human

and chimpanzee brain. Nature Genetics, 38(12):1375-7. http://www.nature.com/ng/

Blanchet, O., Bourge, J.F., Zinszner, H., Israel, A., Kourilsky, P. y Dausset, J. et al.(1992). Altered

binding of regulatory factors to HLA class I enhancer sequence in human tumor cell

lines lacking class I antigen expression. Proceeding of National Academy of Science USA,

(8):3488-349. http://dx.doi.org/10.1073/pnas.89.8.3488

Boado, R.J. (2005). RNA interference and nonviral targeted gene therapy of experimental brain

cancer. NeuroRx, 2(1), 139-150. https://www.neurorx.com/

Brooks, W.H., Latta, R.B. y Mahaley, M.S. (1981). Immunobiology of primary intracranial

tumors. Journal of Neurosurgery, 54, 331-337. http://dx.doi.org/10.3171/jns.1981.54.3.0331

Castillo T. (2016). Análisis de la expresión del gen IGF-I identificado como oncogén en

células de glioma de ratón parentales y transfectadas usando estrategia de terapia génica por

triple hélice y antisentido. Trabajo de grado. Universidad Distrital, Programa de Licenciatura

en Química (Trojan, J. y Ayala, A. et al.), 29 febrero 2016.

Cavazzana-Calvo, M., Hacein-Bey-Abina, S. y Fischer, A. (2010). Ten years of gene therapy:

thoughts and perspectives. Medecine Science (Paris), 26, 115-118.

http://dx.doi.org/10.1051/medsci/2010262115

Chappert P, Leboeuf M, Rameau P, Lalfer M, Desbois S, Liblau RS, et al. (2010). Antigen-

specific Treg impair CD8+ T-cell priming by blocking early T-cell expansion. European

Journal of Immunology, 40, 339-50. http://dx.doi.org/10.1002/eji.200839107

Caruso, G. y Caffo M. (2014). Antisense oligonucleotides in the treatment of cerebral gliomas.

Review of concerning patents. Recent Patents on CNS Drug Discovery, 9(1), 2-12.

http://dx.doi.org/10.2174/15748890978845.

Catuogno, S., Esposito, C.L., Quintavalle, C., Condorelli, G., de Franciscis, V. y Cerchia, L.

(2012). Nucleic acids in human glioma treatment: innovative approaches and recent results.

Journal of Signal Transduction, ID:735135. http://dx.doi.org/10.1155/2012/735135

Choi, B.D., Archer, G.E., Mitchell, D.A., Heimberger, A.B., McLendon, R.E., Bigner, D.D., et

al. (2009). EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathology,

(4), 713-723. doi:10.1111/j.1750-3639.2009.00318.x.

Corsten, M.F., Miranda, R., Kasmieh, R., Krishevsky, A.M., Weisslederer, R. y Shak, R.

(2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic

cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer

Research, 67(19), 8994-9000. http://cancerres.aacrjournals.org/

Costa, P.M., Cardoso, A.L., Mendonça, L.S., Serani, A., Custódia, C., Conceição, M. et al.

(2013). Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to

glioblastoma cells: a promising system for glioblastoma treatment. Moleculat Therapeutic

Nucleic Acids, 2: e100.doi:10.1038/mtna.2013.30.

Dias, N. y Stein, C.A. (2002). Basic concepts and antisense oligonucleotides mechanisms.

Molecular Cancer and Therapeutics, 1, 347-355.

http://mct.aacrjournals.org/site/misc/journal_ifora.xhtml

Dervan, P. (1992). Reagents for the site specific cleavage of megabase DNA. Nature, 359, 87-

http://dx.doi.org/10.1038/359087a0

Di Tomaso, T., Mazzoleni, S., Wang, E., Sovena, G., Clavenna, D., Franzin A, et al.(2010),

Immunobiological characterization of cancer stem cells isolated from glioblastoma patients.

Clinical Cancer Research, 16, 800-813. http://dx.doi.org/10.1158/1078-0432.CCR-09-2730

Dietrich, P.Y., Dutoit, V., Tran Thang, N.N. y Walker, P.R. (2010). T cell immunotherapy for

malignant glioma: toward a combined approach. Current Opinion in Oncology, 22(6), 604-610.

http://dx.doi.org/10.1097/CCO.0b013e32833dead8

Ellouk-Achard, S., Djenabi, S., De Oliveira, G.A., Dessay, G., Duc, H.T., Zoar, M. et al.

(1998). Induction of apoptosis in rat hepatoma cells by expression of IGF-I antisense cDNA.

Journal of Hepatology, 29, 807-818. http://dx.doi.org/10.1016/S0168-8278(98)80263-8

Fakhrai, H., Mantil, J.C., Liu, L., Lin, H., Mercola, D., Black, K.L., et al. (2006). Phase I

clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced

glioma. Cancer Gene Therapy, 13(12), 1052-1060. http://dx.doi.org/10.1038/sj.cgt.7700975

Fonteneau, J.F., Larsson, M., Bhardwaj, N. (2002). Interactions between dead cells and dendritic in the induction of antiviral CTL responses. Current Opinion in Immunology, 14, 471-477.

http://dx.doi.org/10.1016/j.physletb.2010.09.059

Gaffney, D.C., Soyer, H.P. y Simpson, F. (2014). The epidermal growth factor receptor in squamous cell carcinoma: An emerging drug target. Australasian Journal of Dermatology, 55(1), 24-34. http://dx.doi.org/10.1111/ajd

Giovannangeli, C. y Hélène, C. (1997). Progress in developments of triplex based strategies.

Antisense Nucleic Acid Drug Development, 7, 413-421. http://dx.doi.org/10.1002/anie

Gorlia, T., van den Bent, M.J., Hegi, M.E., Mirimanoff, R.O., Weller, M., Cairncross, J.G., et

al. (2008). Nomograms for predicting survival of patients with newly diagnose of glioblastoma:

prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncology,

(1), 29-38. http://dx.doi.org/10.1016/S1470-2045(07)70384-4

Green, P.J., Pines, O. y Inouye, M. (1986). The Role of Antisense RNA in Gene Regulation.

Annual Review of Biochemistry, 55, 569-597. http://www.annualreviews.org/journal/biochem

Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al.

(2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from

preclinical to phase I/II studies. Oligonucleotides, 17(2), 201-212.

Hau, P., Jachimczak, P. y Bogdahn, U. (2009). Treatment of malignant gliomas with TGF-

beta2 antisense oligonucleotides. Expert Review in Anticancer Therapy, 9(11), 1663-1674.

http://dx.doi.org/10.1586/era.09.138

Hau, P., Jachimczak, P., Schlaier, J., Bogdahn, U. (2011). TGF-β2 signaling in high-grade

gliomas. Current Pharmacology and Biotechnology, 12, 2150-2157. http://dx.doi.org/10.2174

Hegi, M. E., Diserens, A.C., Gorlia, T., Hamou, M.F., de Tribolet, N., Weller, M., et al. (2005).

MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal

of Medecine, 352, 997-1003. http://dx.doi.org/10.1056/NEJMoa043331

Hélène, C. (1994). Control of oncogene expression by antisense nucleic acid. European

Journal of Cancer, 30A, 1721-1726. http://dx.doi.org/10.1016/j.ejca.1994

Hutterer, M., Gunsilius, E. y Stockhammer, G. (2006). Molecular therapies for malignant

glioma. Wiener Medizinische Wochenschrift, 156(11-12), 351-363.

http://link.springer.com/journal/10354

Ilan J. (1993).Clinical trial: Gene therapy for human brain tumours using episome based

antisense cDNA transcription of Insulin like Growth Factor I. Proposal for a Phase One gene

therapy clinical study. Protocol NIH no 1602, Bethesda, Maryland, 1993, pp. 1-150.

Iwami, K., Natsume, A. y Wakabayashi, T. (2010). Gene therapy for high-grade glioma.

Neurologica Medicina Chirurgica (Tokyo), 50, 727-736. http://dx.doi.org/10.2176/nmc

Jansen, M., Van Shaik, F.M.A., Ricker, A.T., Bullock, B., Woods, D.E., Gabbay , K.H. et al ( 1983). Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature, 306, 609-611. http://dx.doi.org/10.1038/306609a0

Kalman, B., Szep, E., Garzuly, F. y Post, D.E. (2013). Epidermal growth factor receptor as a

Therapeutic target in glioblastoma. Neuromolecular Medecine, 15(2), 420-434.

doi:10.1007/s12017-013-8229-y

Kiess, W., Lee, L., Graham, D.E., Greenstein, L., Tseng, L.Y., Rechler, M.M. y Nissley, S.P. (1989). Rat C6 glial cells synthesize insulin-like growth factor I (IGF-I) and express IGF-I receptors and IGF-II/mannose 6-phosphate receptors. Endocrinology, 124, 1727–1736.

Kjaergaard, J., Wang, L., Kuriyama, H., Shu, S. y Plautz, G.E. (2005). Active immunotherapy

for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines.

Journal of Neurosurgery, 103,156-164. http://thejns.org/

Lasfarge-Frayssinet, C., Duc, H.T., Sarasin, A., Frayssinet, C., Anthony, D.D., Guo Y, et al.

(1997). Antisense IGF-I transfer into a rat hepatoma cell line inhibits tumorigenesis by

modulatig MHC-I. Cancer Gene Therapy, 4(5), 276-285.

http://dx.doi.org/10.1038/sj.cgt.7700975

Le Corre, S.S., Berchel, M., Belmadi, N., Denis, C., Haelters, J.P., Le Gall, T. et al. (2014).

Cationic lipophosforamidates with two different lipid chains: synthesis and evaluation as gene

carriers. Organic & Biomolecular Chemistry,12, 1463-1474.

http://dx.doi.org/10.1039/c3ob42270d

Le Gall, T., Loizeau, D., Picquet, E., Carmoy, N., Yaouanc, J.J., Burel-Deschamps, L., et al.

(2010). A novel cationic lipophosphoramide with diunsaturated lipid chain synthesis:

physicochemical properties and transfection activities. Journal of Medical Chemistry,

, 1496-1508. http://dx.doi.org/10.1021/jm

Lemoine FM, Cherai M, Giverne C, Dimitri D, Rosenzwajg M, Trebeden-Negre H, et al.

(2009). Massive expansion of regulatory T-cells following interleukin 2 treatment during a

Phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. International Journal of Oncology, 235, 569-581. http://www.spandidos-publications.com/ijo

Li, Y., Jia, Q., Zhang, J., Han, L., Xu, D., Zhang, A. et al. (2010). Combination therapy with

Gamma Knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic

xenografts. Oncology Report, 23(6), 1585-1591.

Lo, H.W. (2010). Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for

malignant gliomas. Current Cancer Drug Targets, 10, 840-848.

http://dx.doi.org/10.2174/156800910793357970

Ly, A., Bouchaud, A., Henin, D., Sanson, M., Delattre, J-Y., Pan Y., et al.(2000). Expression of

IGF-I in glioma cells is associated with change in both immunogenicity and apoptosis.

Neuroscience Letters, 281, 13-16. http://dx.doi.org/10.1016/ 0304-3940(96)12770-1

Ly, A., Duc, H.T., Kalamarides, M., Pan, Y., Shevelev, A., François, J-C, et al. (2001). Human glioma cells transformed by IGF-I triple-helix technology show immune and apoptotic

characteristics determining cell selection for gene therapy of glioblastoma. Journal of Clinical

Pathology (Molecular Pathology), 54(4),230-239. http://dx.doi.org/10.1136/mp.54.4.230

Matthew, L., Saiter, B. y Bhardwag, N. (1998). Dendritic cells acquire antigen from apoptotic

cells and induce class I restricted CTL. Nature, 392, 86-89. http://dx.doi.org/10.1038/32183

Mayfield, C., Ebbinghaus, S., Gee, I., Jones, D., Rodu, B., Squibb, M., et al. (1994). Triplex

formation by the human Ha ras promoter inhibits Spl binding and in vitro transcription. Journal

of Biological Chemistry, 69, 18232 18238. http://dx.doi.org/10.1074/jbc.C113.543132

Migliorini, D., Dietrich, P.Y. y Walker, P.R. (2013). Maximizing output from current glioma

vaccine trials to construct robust next generation immunotherapies. Immunotherapy, 5, 1147-

http://dx.doi.org/10.2217/imt.13.115

Moro-Sibilot, D.M., Coudurier, M. y Lantuejou, S. (2010). Targeting Insulin-like Growth

Factors in the treatment of cancer. Review des Maladies Respiratoires, 27, 959-963.

http://www.sciencedirect.com/science/journal/07618425

Mosquera, C. J. y Castelblanco, O.L. (2015). El cambio didactico y la epistemiologia.

Revista Gondola, 10(1). http://dx.doi.org/10.14483/udistrital.jour.GDLA.2015.1.a00

Obrepalska, A., Kedzia, A., Trojan, J. y Gozdzicka-Jozefiak, A. (2003). Analysis of coding and promoter sequence of IGF-I gene in children with growth disorders presenting normal level of growth hormone. Journal of Pediatric Endocrinology and Metabolism, 16(9): 1267-75; http://dx.doi.org/10.14740

Pai, S.I., Lin, Y.Y., Macaes, B., Meneshian, A., Hung, C.F. y Wu, T.C. (2006). Prospects of

RNA interference therapy for cancer. Gene Therapy, 13(6), 464-477.

http://www.genetherapyreview.com/gene-therapy-publications/journals

Pan, Q., Luo, X. y Chegini, N. (2007). Blocking neuropilin-1 function has an additive effect

with anti VEGF to inhibit tumor growth. Cancer Cell, 11(1), 53-67.

http://dx.doi.org/10.1016/j.ccr.2006.10.018

Pan, Y., Trojan, J., Guo, Y. y Anthony, D.D. (2013). Rescue of MHC-1 antigen processing

machinery by down-regulation in expression of IGF-I in human glioblastoma cells. PLoS

ONE, 8, ID:e58428. http://dx.doi.org/10.1007/s11936-00ç-0012-x

Piwecka, M., Rolle, K., Wyszko, E., Żukiel, R., Nowak, S., Barciszewska, M.Z., et al (2011).

Nucleic acid-based technologies in therapy of malignant gliomas. Current Pharmacological

Biotechnology, 12, 1805-1822. http://dx.doi.org/10.2174/138920111798377067

Pollak, M.N., Schernhammer, E.S. y Hankinson, S.E. (2004). Insulin-like growth factors and neoplasia. Nature Review Cancer, 4, 505–518. http://dx.doi.org/10.1038/nrc

Premkumar, D.R., Arnold, B., Jane, E.P. y Pollack, I.F. (2006): Synergistic interaction between

AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells.

Molecular Carcinogenesis, 45, 47-59. http://dx.doi.org/10.1002/mc.20152

Reardon, D.A., Quinn, J.A., Vredenburgh, J.J., Gururangan, S., Friedman, A.H., Desjardins,

A., et al. (2006). Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant

glioma. Clinical Cancer Research, 12, 860-886. http://dx

Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. y Rubin, R. (1994). Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are non tumorigenic and induce regression of wild-type tumors. Cancer Research,

, 2218–2222. http://cancerres.aacrjournals.org

Rodríguez, J.A., Galeano, L., Palacios, D.M., Gómez, C, Serrano, M.L., Bravo, M.M., et al.

(2012). Altered HLA class I and HLA-G expression is associated with IL-10 expression in

patients with cervical cancer. Pathobiology, 79,72-83. http://dx.doi.org/10.1159/000334089

Rubenstein, J.L., Nicolas, J.F. y Jacob, F. (1984). Nonsense RNA: a tool for specifically

inhibiting the expression of a gene in vivo. Compte Rendu d’Academie de Science Paris III,

, 271-274. http://dx.doi.org/10.1090/S0002-9947-1952-0051341-6

Sachdev, D. (2010). Targeting the type I Insulin-like Growth Factor system for breast cancer

therapy. Current Drug Targets, 11, 1121-1132.

http://dx.doi.org/10.2174/138945010792006816

Saji, M., Moriarty, J., Ban, T., Singer, D. y Kohn, L. (1992). Major Histocompatibility

Complex class I gene expression in rat thyroid cells is regulated by hormones, methimazole

and iodide as well as interferon. Journal of Clinical Endocrinology and Metabolism, 75(3),

-878. http://press.endocrine.org/loi/jcem

Scaggiante, B., Morassutti, C., Tolazzi, G., Michelutti, A., Baccarani, M. y Quadrifoglio, E.

(1994). Effect of unmodified triple helix forming oligodeoxyribonucleotide targeted to human

multidrug resistance gene mdrl in MDR cancer cells. FEBS Letters, 352, 380-384.

http://dx.doi.org/10.1016/0014-5793(94)00995-3

Schlingensiepen, K.H., Schlingensiepen, R., Steinbrecher, A., Hau, P., Bogdahn, U., Fischer-

Blass, B, et al. (2006). Targeted tumortherapy with the TGF-beta2 antisense compound AP

Cytokin Growth Factor Review, 17, 129-139.

http://dx.doi.org/10.1016/j.cytogfr.2005.09.002

Schlingensiepen, K.H., Fischer-Blass, B., Schmaus, S. y Ludwig, S. (2008). Antisense

therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development

against malignant tumors. Recent Results in Cancer Research, 177, 137-150.

http://dx.doi.org/10.1007/-978-3-540-71279-4-16

Schlingensiepen, K.H., Jaschinski, F., Lang, S.A., Moser, C., Geissler, E.K., Schlitt, H.J. et

al. (2011). Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in

pancreatic cancer. Cancer Science, 102(6), 1193-200. doi:10.1111/j.1349-7006.2011.01917.

Schwartz, R.H. (1992). Costimulation of T Iymphocytes: the role of CD28, CTLA-4 and

B7/BBI in interleukin-2 production and immunotherapy. Cell, 71:1065-1068.

http://dx.doi.org/10.1016/S0092-8674(05)80055-8

Shevelev, A., Burfeind, P., Schulze, E., Rininsland, F., Johnson, T., Trojan J., et al.(1997)

Potential triple helix mediated inhibition of IGF I gene expression significantly reduces

tumorigenicity of glioblastoma in an animal model. Cancer Gene Therapy, 4(2), 105 112.

http://dx.doi.org/10.1038/sj.cgt.7700975

Sia, K.C., Chong, W.K., Ho, I.A., Yulyana, Y., Endaya, B., Huynh. H, et al.(2010). Hybrid

Herpes Simplex virus/Epstein-Barr virus amplicon viral vectors confer enhanced transgene

expression in primary human tumors and human bone-marrow-derived mesenchymal stem

cells. Journal of Gene Medecine, 12, 848-858. http://dx.doi.org/10.1002/jgm.1506

Stupp, R. y Hottinger, A.F. (2008). Management of malignant glioma - Quo vadis?.

Onkologie, 31, 300-302. http://dx.doi.org/10.1159/000134024

Szpechcinski, A., Trzos, R., Jarocki, P. , Trojan, L.A., Oficjalska, K. , Junkiert, A. et al.

(2004). Presence of MHC-I in rat glioma cells expressing antisense IGF-I-Receptor RNA.

Roczniki Akademii Medycznej w Bialymstoku (Adances of Medical Science), 49(1), 98-104.

http://www.advms.pl/

Thomas, T., Faaland, C., Gallo, M. y Thomas, T. (1999). Suppression of c myc oncogene.

Expression by a polyamine complexed triplex forming oligonucleotide in MCF 7 breast cancer

cells. Nucleic Acids Research, 23:3594-3599. http://dx.doi.org/10.1093/nar/23.17.3594

Trojan, J. y Uriel, J. (presentado para F. Jacob). (1979). Intracellular localisation of alphafeprotein and serum albumin in the central nervous system of the rat during fetal and post natal development. (in french). Compte Rendu d’Academie de Science, Paris, 289(15), 1157-1160.

http://dx.doi.org/10.2517

Trojan, J., Uriel, J., Deugnier, M.A. y Gaillard, J. (1984). Immunocytochemical quantitative

study of alpha-fetoprotein in normal and neoplasic neural development. Developmental

Neuroscience, 6:251-59. http://dx.doi.org/10.1097/00001756-200307180-00016

Trojan, J., Blossey, B.K., Johnson, T., Rudin, S., Tykocinski, M., Ilan, Ju, et al.(1992). Loss of

tumorogenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of

insulin-like growth factor I. Proceeding of National Academy of Science USA, 89(11), 4874-

http://dx.doi.org/10.1073/pnas.93.7.2909

Trojan, J., Johnson, T.R., Rudin, S.D., Ilan, Ju., Tykocinski, M.L. y Ilan, J. (1993). Treatment

and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense Insulin like

Growth Factor I RNA. Science, 259, 94-97. http://www.sciencedirect.com

Trojan, J., Johnson, T., Rudin, S., Blossey, B., Kelley, K., Shevelev, A., et al. (1994). Gene

therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in

immunogenicity and differentiation. Proceeding of Nationall Academy of Science USA,

, 6088-6092. http://dx.doi.org/10.1073/pnas.93.7.2909

Trojan, J., Duc, H.T., Upegui Gonzalez, L., Hor, F., Guo, Y., Anthony, D.D., et al. (1996).

Presence of MHC¬-I and B 7 molecules in rat and human glioma cells expressing antisense

IGF I mRNA. Neuroscience Letters, 212, 9 12. http://dx.doi.org/10.1016/ 0304-

(96)12770-1

Trojan, L.A., Kopinski, P., Mazurek, A., Chyczewski, L., Ly, A., Jarocki, P., et al (2003). IGF-I Triple Helix Gene Therapy of Rat and Human Gliomas. Annales Academiae Medicae Bialostocensis (Roc Akad Med Bial), 48, 18-27. http://www.advms.pl/

Trojan, L.A., Ly, A., Kopinski, P., Ardourel, M-Y., Dufour, T., Duc, H.T., et al. (2006).

Antisense and triple helix anti IGF-I tumours vaccines - gene therapy of gliomas. International

Journal of Cancer Prevention, 2(4), 227-243. http://dx.doi.org/10.15430/JCP.

Trojan, J., Cloix, J-F., Ardourel, M-Y., Chatel, M., Anthony, D.D. (2007) Insulin-like

growth factor type 1 biology and targeting in malignant glioma. Neuroscience, 145, 795-

http://dx.doi.org/10.1016/ j.neuroscience.2007.01.021

Trojan, J., Ly, A., Wei, M.X., Kopinski, P., Ardourel, M.Y., Pan Y, et al. (2010). Antisense anti

IGF-I cellular therapy of malignant tumours: immune response in cancer patients. Biomedecine

& Pharmacotherapy, 64, 576-578. http://dx.doi.org/10.1016/j.physletb.2010.09.059.

Trojan, J., Pan, Y.X., Wei, M.X., Ly,A., Shevelev, A., Bierwagen M, et al. (2012). Methodology

for anti - gene anti IGF-I therapy of malignant tumours. Chemotherapy Research and Practice,

doi:10.1155/2012/721873. http://dx.doi.org/10.1155/2014/520701.

Trojan, J. y Briceño, I. (2013). IGF-I antisense and triple-helix gene therapy of glioblastoma.

In: T. Lichtor “Evolution of the Molecular Biology of Brain Tumors and the Therapeutic

Implications”‏, Ed. InTech, Vienna, Riyeka, Vol. 5, pp 149-166. ISBN 980-953-307-74

Trojan, A., Jay, L.M., Kasprzak, H., Anthony, D.D. y Trojan, J. (2014). Immunotherapy of

malignant tumors using antisense anti-IGF-I approach: case of glioblastoma. Journal of

Cancer Therapy, 5, 685-705. http://dx.doi.org/10.4236/jct.2014

Tsai, Y.J., Hu, C.C., Chu, C.C. y Imae, T. (2011). Intrinsically fluorescent PAMAM

dendrimer as gene carrier and nanoprobe for nucleic acids delivery: bioimaging and

transfection study. Biomacromolecules, 12, 4283-4290. http://dx.doi.org/10.1021/bm

Upegui-Gonzalez, L.C., Duc, H.T., Buisson, Y., Arborio, M., Lafarge-Frayssinet, C., Jasmin,

C., et al.(1998). Use of antisense strategy in the treatment of the hepatocarcinoma. Advances in

Experimental Medicine and Biology, 451, 35-42. http://dx.doi.org/10.4161

.doi.org/10.1158/1078-0432

Weintraub, H., Izant, J. y Harland, R. (1985). Antisense RNA as a molecular tool for genetic

analysis. Trends in Genetics, 1(1), 23-25. http://dx.doi.org/10.1016/S0168-9525

Wen, P.Y., Yung, W.K., Lamborn, K.R., Dahia, P.L., Wang, Y., Peng, B. et al. (2006). Phase

I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor

Consortium Study 99-08. Clinical Cancer Research, 12, 4899-4907.

http://dx.doi.org/10.1158/1078-0432.CCR- 06-0773

Wikipedia, free Encyclopedia – Gene therapy, history: 1990s, updated 2016

Wongkajornsilp, A., Ouyprasertkul, M., Sangruchi, T., Huabprasert, S., Pan, Y. y Anthony DD.

(2001). The analysis of peri-tumour necrosis following the subcutaneous implantation of

autologous tumor cells transfected with an episome transcribing an antisense IGF-I RNA in a

glioblastoma multiforme subject. Journal of Medical Association of Thai, 4(3), 740-747.

Yang, L., Lin, Z., Huang, Q., Lin, J., Chen, Z., Zhou, L. et al. (2011). Effect of vascular

endothelial growth factor on remodeling of C6 glioma tissue in vivo. Journal of Neuro-

Oncology, 103(1), 33-41.doi:10.1007/s11060-010-0356-9.

Zhang, A., Hao, J., Wang, K., Huang, Q., Yu K., Kang, C., et al. (2013). Down-regulation of

miR-106b suppresses the growth of human glioma cells. Journal of Neurooncology,

(2), 17989.doi: 10.1007/s11060-013-1061-2.

Zhang, J., Han, L., Zhang, A., Wang, Y., Yue, X., You, Y., et al. (2010). AKT2 expression is

associated with glioma malignant progression and required for cell survival and invasion.

Oncology Report, 24(1), 65-72

Zhu, C., Trabado, S., Fan, Y., Trojan, J., Lone, Y.C., Giron-Michel, J., et al. (2015).

Characterization of effector components from the humoral and cellular immune response

stimulated by melanoma cells exhibiting modified IGF-1 expression. Biomedicine &

Pharmacotherapy, 70, 53-57. doi: 10.1016/j.biopha.2015.01.002

Cómo citar

APA

Castillo, T., Trojan, A., Noguera, M. C., Jay, L. M., Crane, C., Shevelev, A., Alvarez, A., Kasprzak, H., Melo, G., Penagos, P. J., Aristizabal, B. H., Briceño, I., Ayala, A., Duc, H. T., & Trojan, J. (2016). Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica. Revista Científica, 25(2), 228–240. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a6

ACM

[1]
Castillo, T., Trojan, A., Noguera, M.C., Jay, L.M., Crane, C., Shevelev, A., Alvarez, A., Kasprzak, H., Melo, G., Penagos, P.J., Aristizabal, B.H., Briceño, I., Ayala, A., Duc, H.T. y Trojan, J. 2016. Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica. Revista Científica. 25, 2 (ago. 2016), 228–240. DOI:https://doi.org/10.14483//udistrital.jour.RC.2016.25.a6.

ACS

(1)
Castillo, T.; Trojan, A.; Noguera, M. C.; Jay, L. M.; Crane, C.; Shevelev, A.; Alvarez, A.; Kasprzak, H.; Melo, G.; Penagos, P. J.; Aristizabal, B. H.; Briceño, I.; Ayala, A.; Duc, H. T.; Trojan, J. Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica. Rev. Cient. 2016, 25, 228-240.

ABNT

CASTILLO, T.; TROJAN, A.; NOGUERA, M. C.; JAY, L. M.; CRANE, C.; SHEVELEV, A.; ALVAREZ, A.; KASPRZAK, H.; MELO, G.; PENAGOS, P. J.; ARISTIZABAL, B. H.; BRICEÑO, I.; AYALA, A.; DUC, H. T.; TROJAN, J. Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica. Revista Científica, [S. l.], v. 25, n. 2, p. 228–240, 2016. DOI: 10.14483//udistrital.jour.RC.2016.25.a6. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10426. Acesso em: 19 oct. 2021.

Chicago

Castillo, Tatiana, Annabelle Trojan, Maria Claudia Noguera, Lina Manuela Jay, Cecilia Crane, Alexander Shevelev, Alvaro Alvarez, Heliodor Kasprzak, Gonzalo Melo, Pedro Jose Penagos, Beatriz Helena Aristizabal, Ignacio Briceño, Adis Ayala, Huynh T. Duc, y Jerzy Trojan. 2016. «Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica». Revista Científica 25 (2):228-40. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a6.

Harvard

Castillo, T., Trojan, A., Noguera, M. C., Jay, L. M., Crane, C., Shevelev, A., Alvarez, A., Kasprzak, H., Melo, G., Penagos, P. J., Aristizabal, B. H., Briceño, I., Ayala, A., Duc, H. T. y Trojan, J. (2016) «Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica», Revista Científica, 25(2), pp. 228–240. doi: 10.14483//udistrital.jour.RC.2016.25.a6.

IEEE

[1]
T. Castillo, «Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica», Rev. Cient., vol. 25, n.º 2, pp. 228–240, ago. 2016.

MLA

Castillo, T., A. Trojan, M. C. Noguera, L. M. Jay, C. Crane, A. Shevelev, A. Alvarez, H. Kasprzak, G. Melo, P. J. Penagos, B. H. Aristizabal, I. Briceño, A. Ayala, H. T. Duc, y J. Trojan. «Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica». Revista Científica, vol. 25, n.º 2, agosto de 2016, pp. 228-40, doi:10.14483//udistrital.jour.RC.2016.25.a6.

Turabian

Castillo, Tatiana, Annabelle Trojan, Maria Claudia Noguera, Lina Manuela Jay, Cecilia Crane, Alexander Shevelev, Alvaro Alvarez, Heliodor Kasprzak, Gonzalo Melo, Pedro Jose Penagos, Beatriz Helena Aristizabal, Ignacio Briceño, Adis Ayala, Huynh T. Duc, y Jerzy Trojan. «Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica». Revista Científica 25, no. 2 (agosto 31, 2016): 228–240. Accedido octubre 19, 2021. https://revistas.udistrital.edu.co/index.php/revcie/article/view/10426.

Vancouver

1.
Castillo T, Trojan A, Noguera MC, Jay LM, Crane C, Shevelev A, Alvarez A, Kasprzak H, Melo G, Penagos PJ, Aristizabal BH, Briceño I, Ayala A, Duc HT, Trojan J. Epistemológica experiencia en la elaboración de tecnología biomolecular para estrategia de la inmunoterapia génica. Rev. Cient. [Internet]. 31 de agosto de 2016 [citado 19 de octubre de 2021];25(2):228-40. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10426

Descargar cita

Visitas

780

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.