DOI:

https://doi.org/10.14483//udistrital.jour.RC.2016.25.a11

Publicado:

2016-08-31

Número:

Vol. 25 Núm. 2 (2016): mayo-agosto

Sección:

Ciencia e ingeniería

Nueva correlación generalizada para estimar la presión de vapor

A new generalized correlation for accurate vapor pressure

Autores/as

  • Luis Fernando Cardona-Palacio Fundación Universitaria Luis Amigó

Palabras clave:

Presión de vapor, sustancias puras, entalpía de vaporización, hidrocarburos, criterio de Waring. (es).

Palabras clave:

Vapor pressure, pure substances, enthalpy of vapourization, hydrocarbons, Waring’s criteria (en).

Descargas

Resumen (es)

En el presente trabajo se propone una nueva correlación generalizada para el cálculo de la presión de vapor de sustancias puras. A partir de datos de equilibrio líquido-vapor de 28 refrigerantes y mediante minimización de la suma de los cuadrados de las desviaciones relativas de la presión de vapor, se determinó los parámetros y constantes característicos de la nueva ecuación y a partir del factor acéntrico se generaliza para cualquier sustancia pura. Se evaluó en 45 sustancias puras que no participaron en la minimización, generando porcentajes de desviación relativas promedio de 1.6073%. Se comparan los resultados obtenidos con otros modelos para el cálculo de la presión de vapor y los resultados indican que la nueva ecuación propuesta genera una mejor precisión. Finalmente se calculan entalpías de vaporización con desviaciones del 0.882% y se aplica el criterio de Waring con el fin de comprobar las constantes presentadas en la investigación. 

Resumen (en)

In this work, a new generalized correlation for pure substances is proposed for the estimation of vapor pressure, applicable in wide temperature range. Was used equilibrium liquid-vapor data with 28 refrigerants and minimizing the sum of the squares of the relative deviation in liquid-vapour pressure were determined the parameters and constants characteristics of the new equation and generalized for any pure substance using the acentric factor. Vapor pressure predictions were made for 45 pure substances who they didn´t not participate in the minimization, generated percent relative average deviation of 1.6073%. The results were compared with others equations for calculating the vapor pressure and  the  comparison  indicates  that  the  proposed  method provide  more  accurate  results  than  other  methods  used  in  this  work. Finally, the calculations of enthalpies of vaporization were done with deviations of 0.880% and the Waring criterion was applied to check the constants presed in this paper

Biografía del autor/a

Luis Fernando Cardona-Palacio, Fundación Universitaria Luis Amigó

Ingeniero químico de la Universidad Pontificia Bolivariana. Magíster en Ingeniería de la Universidad Pontificia Bolivariana y Magíster en Matemáticas Aplicadas de la Universidad EAFIT. Docente Investigador de la Fundación Universitaria Luis Amigo. Investigador adscrito al grupo de SISCO de la facultad de Ingeniería de la FUNLAM. Correo electrónico: luis.cardonapa@amigo.edu.co

Referencias

Chapra, S. & Canale, R. (1988). Métodos Numéricos para Ingenieros, México DF, México: McGraw-Hill.

Forero G., L. A., & Velásquez J., J. A. (2011). Wagner liquid–vapour pressure equation constants from a simple methodology. The Journal of Chemical Thermodynamics, 43(8), 1235–1251.

Godavarthy, S. S., Robinson, R. L., & Gasem, K. a. M. (2006). SVRC–QSPR model for predicting saturated vapor pressures of pure fluids. Fluid Phase Equilibria, 246(1-2), 39–51.

Lasdon, L.S., Waren, A.D., Jain A. & Ratner, M. (1976). Design and Testing of a Generalized Reduced Gradient Code for Nonlinear

Programming. ACM Trans. Math. Softw. 1-45.

McGarry, J. (1983). Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges. Ind. Eng. Chem. Process Des. Dev., 313–322.

Mejbri, K., & Bellagi, A. (2005). Corresponding states correlation for the saturated vapor pressure of pure fluids. Thermochimica Acta, 436(1-2), 140–149.

Mohebbi, A., Taheri, M., & Soltani, A. (2008). A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants. International Journal of Refrigeration, 31(8), 1317–1327.

NIST Chemistry WebBook. (2016). Propiedades termofísicas de sistemas fluidos. Estados Unidos de Norte America. Recuperado de http://webbook.nist.gov/chemistry/fluid/

Reid, R. C., Prausnitz, J. M. & Poling, B. E., (1987), The Properties of Gases & Liquids, Nueva York: Estados Unidos de Norte America: McGraw-Hill.

Riedel, L. (1954). Kritischer Koeffizient, Dichte des gesättigten dampfes und verdampfungswärme. untersuchungen über eine erweiterung des theorems der übereinstimmenden zustände. Teil III. Chem. Ing. Tech. 26, 679-683.

Sanjari, E. (2013). A new simple method for accurate calculation of saturated vapor pressure. Thermochimica Acta, 560, 12–16.

Sanjari, E., Honarmand, M., Badihi, H., & Ghaheri, A. (2013). An accurate generalized model for predict vapor pressure of refrigerants. International Journal of Refrigeration, 36(4), 1327–1332.

Cómo citar

APA

Cardona-Palacio, L. F. (2016). Nueva correlación generalizada para estimar la presión de vapor. Revista Científica, 25(2), 280–289. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a11

ACM

[1]
Cardona-Palacio, L.F. 2016. Nueva correlación generalizada para estimar la presión de vapor. Revista Científica. 25, 2 (ago. 2016), 280–289. DOI:https://doi.org/10.14483//udistrital.jour.RC.2016.25.a11.

ACS

(1)
Cardona-Palacio, L. F. Nueva correlación generalizada para estimar la presión de vapor. Rev. Cient. 2016, 25, 280-289.

ABNT

CARDONA-PALACIO, L. F. Nueva correlación generalizada para estimar la presión de vapor. Revista Científica, [S. l.], v. 25, n. 2, p. 280–289, 2016. DOI: 10.14483//udistrital.jour.RC.2016.25.a11. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10471. Acesso em: 5 dic. 2021.

Chicago

Cardona-Palacio, Luis Fernando. 2016. «Nueva correlación generalizada para estimar la presión de vapor». Revista Científica 25 (2):280-89. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a11.

Harvard

Cardona-Palacio, L. F. (2016) «Nueva correlación generalizada para estimar la presión de vapor», Revista Científica, 25(2), pp. 280–289. doi: 10.14483//udistrital.jour.RC.2016.25.a11.

IEEE

[1]
L. F. Cardona-Palacio, «Nueva correlación generalizada para estimar la presión de vapor», Rev. Cient., vol. 25, n.º 2, pp. 280–289, ago. 2016.

MLA

Cardona-Palacio, L. F. «Nueva correlación generalizada para estimar la presión de vapor». Revista Científica, vol. 25, n.º 2, agosto de 2016, pp. 280-9, doi:10.14483//udistrital.jour.RC.2016.25.a11.

Turabian

Cardona-Palacio, Luis Fernando. «Nueva correlación generalizada para estimar la presión de vapor». Revista Científica 25, no. 2 (agosto 31, 2016): 280–289. Accedido diciembre 5, 2021. https://revistas.udistrital.edu.co/index.php/revcie/article/view/10471.

Vancouver

1.
Cardona-Palacio LF. Nueva correlación generalizada para estimar la presión de vapor. Rev. Cient. [Internet]. 31 de agosto de 2016 [citado 5 de diciembre de 2021];25(2):280-9. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10471

Descargar cita

Visitas

773

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.