Análisis de la producción de publicaciones científicas en inteligencia artificial aplicada a la formulación de Políticas Públicas

Analysis of the production of scientific publications in artificial intelligence applied to the formulation of public policies

  • Juan Manuel Sánchez-Céspedes Universidad Distrital Francisco José de Caldas https://orcid.org/0000-0001-9101-2936
  • Juan Pablo Rodríguez-Miranda Universidad Distrital Francisco José de Caldas
  • Octavio José Salcedo-Parra Universidad Distrital Francisco José de Caldas https://orcid.org/0000-0002-0767-8522
Palabras clave: artificial intelligence, public policy, decision-making, policy formulation, bibliometric analysis (en_US)
Palabras clave: inteligencia artificial, política pública, toma de decisiones, formulación de políticas, análisis bibliométrico (es_ES)

Resumen (es_ES)

El objetivo de este artículo es analizar las publicaciones científicas especializadas en el uso de herramientas de inteligencia artificial en el proceso de toma de decisiones durante la formulación de políticas públicas. Como herramienta metodológica se creó una ecuación de búsqueda para ubicar las publicaciones concernientes, la cual fue probada y perfeccionada varias veces para mejorar los resultados encontrados. Esta ecuación fue aplicada en la base de datos de Scopus, con lo cual se obtuvieron 1154 publicaciones, a las que se aplicaron indicadores bibliométricos. En los resultados obtenidos se encontró que principalmente esta área ha tenido un gran crecimiento en la última década; cuyos países con mayor producción son: Estados Unidos, República Popular de China y el Reino Unido. Al comparar producción científica con las entidades patrocinantes se pudo concluir la importancia del apoyo gubernamental para desarrollo científico de un país.

Resumen (en_US)

The objective of this article is to analyze the scientific publications made regarding the use of artificial intelligence tools in the decision-making process in the formulation of public policies. The methodology used was initially to create a search equation to locate the publications in this regard, which was tested and refined several times to improve the results found, this equation was applied in the SCOPUS database, with which 1.154 publications were obtained, to which bibliometric indicators were applied. The main results obtained were that this area has had great growth in the last decade, where the countries with the highest production are the United States, the People's Republic of China and the United Kingdom. By comparing scientific production with financing entities, it was possible to conclude the importance of government support for scientific development in a country.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Juan Manuel Sánchez-Céspedes, Universidad Distrital Francisco José de Caldas

Facultad de Ingeniería, Docente de Planta Tiempo Completo

Juan Pablo Rodríguez-Miranda, Universidad Distrital Francisco José de Caldas

Ingeniero Sanitario y Ambiental, Magister en Gestión y Evaluación Ambiental. Doctor en Ingeniería. Profesor Titular y director del grupo de investigación AQUAFORMAT. Universidad Distrital Francisco José de Caldas Facultad del Medio Ambiente.

Octavio José Salcedo-Parra, Universidad Distrital Francisco José de Caldas

Profesor Titular y Director del grupo de investigación Internet Inteligente, Universidad Distrital Francisco José de Caldas, Facultad de Ingeniería. Profesor Titular, Universidad Nacional de Colombia, Facultad de Ingeniería.

Referencias

Androutsopoulou, A., Charalabidis, Y. (2018). Α Framework for Evidence Based Policy Making Combining Big Data, Dynamic Modelling and Machine Intelligence. ACM International Conference Proceeding Series, 575-583.

https://doi.org/10.1145/3209415.3209427

Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y. (2018). Combining Technocrats” Expertise with Public Opinion through an Innovative e-Participation platform. IEEE Transactions on Emerging Topics in Computing, 6750(c), 1-14.

https://doi.org/10.1109/TETC.2018.2824022

Androutsopoulou, A., Mureddu, F., Loukis, E., Charalabidis, Y. (2016). Passive Expert-Sourcing for Policy Making in the European Union. IFIP International Federation for Information Processing, 9821, 55-66.

https://doi.org/10.1007/978-3-319-45074-2

Baudasse, T., Calderón, C. (2009). Integración comercial del sector agrícola y desigualdad económica en los países en vías de desarrollo. Investigación Económica, 68(269), 37-72. https://doi.org/10.22201/fe.01851667p.2009.269.16603

Borghesi, A., Milano, M. (2019). Merging observed and self-reported behaviour in agent-based simulation: A case study on photovoltaic adoption. Applied Sciences (Switzerland), 9(10).

https://doi.org/10.3390/app9102098

Charalabidis, Y., Loukis, E. (2011). Transforming government agencies” approach to eparticipation through efficient exploitation of social media. 19th European Conference on Information Systems, ECIS.

Charalabidis, Y., Loukis, E., Androutsopoulou, A. (2011). Enhancing participative policy making through modelling and simulation: A state of the art review. Proceedings of the European, Mediterranean and Middle Eastern Conference on Information Systems - Informing Responsible Management: Sustainability in Emerging Economies, EMCIS, pp. 210-222.

Charalabidis, Y., Loukis, E., Spiliotopoulou, L., Diamantopoulou, V. (2013). A framework for utilizing Web 2.0 social media for participative governance. Proceedings of the European, Mediterranean and Middle Eastern Conference on Information Systems, EMCIS, pp. 0-15.

Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., Vlachogiannakis, N. (2018). Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Systems with Applications, 112, 353-371.

https://doi.org/10.1016/j.eswa.2018.06.032

Chávez, E. M., Arguello, A. M., Viscarra, C. P., Aro, G. L., Albarrasín, M.V. (2018). Inteligencia artificial en la toma de decisiones gerenciales. Revista Dilemas Contemporáneos: Educación, Política y Valores, 6(especial), 1-12.

Chen, L., Qiao, Z., Wang, M., Wang, C., Du, R., Stanley, H.E. (2018). Which Artificial Intelligence Algorithm Better Predicts the Chinese Stock Market? IEEE Access, 6, 48625-48633.

https://doi.org/10.1109/ACCESS.2018.2859809

Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L. (2017). Disease Prediction by Machine Learning over Big Data from Healthcare Communities. IEEE Access, 5, 8869-8879.

https://doi.org/10.1109/ACCESS.2017.2694446

Chen, P.T., Lin, C.L., Wu, W.N. (2020). Big data management in healthcare: Adoption challenges and implications. International Journal of Information Management, 102078.

https://doi.org/10.1016/j.ijinfomgt.2020.102078

Cohen, M. D., March, J. G., Olsen, J. P. (1972). A Garbage Can Model of Organizational Choice. Administrative Science Quarterly, 17(1), 1-25. https://doi.org/10.2307/2392088

Comisión Europea (2020). Qué hace la Comisión Europea en materia de estrategia y políticas.

https://ec.europa.eu/info/about-european-commission/what-european-commission-does/strategy-and-policy_es

Fernández, J. A., Martín, Q. M., Rodríguez, J. M. C. (2013). Business Intelligence Expert System on SOX Compliance over the Purchase Orders Creation Process. Intelligent Information Management, 5(3), 49-72.

https://doi.org/http://dx.doi.org/10.4236/iim.2013.53007

Flath, C. M., Stein, N. (2018). Towards a data science toolbox for industrial analytics applications. Computers in Industry, 94, 16-25.

https://doi.org/10.1016/j.compind.2017.09.003

Gavanelli, M., Milano, M., Bragaglia, S., Chesani, F., Marengo, E., Cagnoli, P. (2014). Multi-criteria optimal planning for energy policies in CLP? CEUR Workshop Proceedings, 1195, 54-68.

Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P. (2016). Constraint and optimization techniques for supporting policy making. Computational Intelligent Data Analysis for Sustainable Development, 361-381.

Gimona, A., Polhill, J. G. (2011). Exploring robustness of biodiversity policy with a coupled meta community and agent-based model. Journal of Land Use Science, 6(2-3), 175-193.

https://doi.org/10.1080/1747423X.2011.558601

Gimona, A., Polhill, J.G., Davies, B. (2011). Sinks, sustainability, and conservation incentives. En J. Liu, V. Hull, A. T. Morzillo, J. A. Wiens (eds.), Sources, Sinks and Sustainability (pp. 155-178). https://doi.org/10.1017/CBO9780511842399.010

Gómez, P. P. (2016). Evaluación de la política pública de reforma agraria en Colombia (1991-2010): Estudios de caso en seis municipios del país. Universidad Nacional de Colombia.

http://www.bdigital.unal.edu.co/53481/

Huser, B., Rutledge, D. T., Van Delden, H., Wedderburn, M. E., Cameron, M., Elliott, S., … Woods, R. A. (2009). Development of an integrated spatial decision support system (ISDSS) for local government in New Zealand. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, 2370-2376.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.

https://doi.org/10.1136/svn-2017-000101

Lin, H., Zhu, H., Zuo, Y., Zhu, C., Wu, J., Xiong, H. (2017). Collaborative company profiling: Insights from an employee”s perspective. 31st AAAI Conference on Artificial Intelligence, AAAI, 1417-1423.

Loukis, E., Maragoudakis, M., Kyriakou, N. (2019). Economic Crisis Policy Analytics Based on Artificial Intelligence. IFIP International Federation for Information Processing 2019, 11685, 301-310. https://doi.org/10.1007/978-3-030-27325-5

Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, K., … Dewhurst, M. (2017). Un futuro que funciona: automatización, empleo y productividad. McKinsey Global Institute.

Marine-Roig, E. (2017). Measuring destination image through travel reviews in search engines. Sustainability (Switzerland), 9(8). https://doi.org/10.3390/su9081425

Mehta, N., Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57-65.

https://doi.org/10.1016/j.ijmedinf.2018.03.013

Menon, V. M., Rahulnath, H. A. (2017). A novel approach to evaluate and rank candidates in a recruitment process by estimating emotional intelligence through social media data. 2016 International Conference on Next Generation Intelligent Systems, ICNGIS.

https://doi.org/10.1109/ICNGIS.2016.7854061

Milano, M. (2013a). Optimization for policy making: The cornerstone for an integrated approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8124 LNCS, 1-2.

https://doi.org/10.1007/978-3-642-40627-0_1

Milano, M. (2013b). Sustainable energy policies: Research challenges and opportunities. Proceedings -Design, Automation and Test in Europe, DATE, 1143-1148.

https://doi.org/10.7873/date.2013.239

Milano, M., O”Sullivan, B., Gavanelli, M. (2014). Sustainable policy making: A strategic challenge for artificial intelligence. AI Magazine, 35(3), 22-35.

https://doi.org/10.1609/aimag.v35i3.2534

Moon, S.H., Kim, Y.H., Lee, Y.H., Moon, B.R. (2019). Application of machine learning to an early warning system for very short-term heavy rainfall. Journal of Hydrology, 568, 1042-1054. https://doi.org/10.1016/j.jhydrol.2018.11.060

Morales, S.L., Morales, M.R., Rizo, R. (2017). Metodología para procesos de inteligencia de negocios con mejoras en la extracción y transformación de fuentes de Datos. Revista Publicando, 4(11), 107-119. http://rmlconsultores.com/revista/index.php/crv/article/view/553/pdf_364

Moreno, J.M., Sánchez, J.M., Espítia, H.E. (2018). Water Level Prediction Using Artificial Neural Network Model. International Journal of Applied Engineering Research, 13(19), 14378-14381.

http://www.ripublication.com/ijaer18/ijaerv13n19_45.pdf

National Science Foundation (2020). US NSF-About Funding.

https://www.nsf.gov/funding/aboutfunding.jsp

Nawaz, N. (2019). Artificial intelligence interchange human intervention in the recruitment process in Indian software industry. International Journal of Advanced Trends in Computer Science and Engineering, 8(4), 1433-1442. https://doi.org/10.30534/ijatcse/2019/62842019

Nayak, A., Pai, M.M.M., Pai, R.M. (2016). Prediction Models for Indian Stock Market. Procedia Computer Science, 89, 441-449. https://doi.org/10.1016/j.procs.2016.06.096

NSFC (2020). About Us-NSFC at a Glance.

http://www.nsfc.gov.cn/english/site_1/about/6.html

Okesola, O.J., Okokpujie, K.O., Adewale, A. A., John, S.N., Omoruyi, O. (2018). An Improved Bank Credit Scoring Model: A Naïve Bayesian Approach. Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI, 228-233.

https://doi.org/10.1109/CSCI.2017.36

Ospina, D.M. (2017). Reivindicando al campesinado en Colombia: análisis de las fallas de redistribución y de reconocimiento en la implementación de las políticas agrarias de los siglos XX-XXI, y en la Política Pública de Víctimas y Restitución de Tierras.

http://bdigital.unal.edu.co/64749/3/Trabajo%20de%20grado%20Diana%20Mendoza%20Ospina%202018.pdf

Peña, J.J., Chan, A.O., Balam, C. del C. (2017). Sistema experto en apoyo a toma de decisiones para aprobación de líneas de crédito. Pistas Educativas, 39(04), 402-411.

Polhill, J. G., Gimona, A. y Gotts, N. M. (2010). Analysis of incentive schemes for biodiversity using a coupled agent-based model of land use change and species metacommunity model. Modelling for Environment”s Sake: Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, IEMS, 1, 809-816.

Polhill, J. G., Gimona, A., Gotts, N. M. (2013). Nonlinearities in biodiversity incentive schemes: A study using an integrated agent-based and metacommunity model. Environmental Modelling and Software, 45, 74-91.

https://doi.org/10.1016/j.envsoft.2012.11.011

Poole, D., Mackworth, A. (2017). Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press.

Ramesh, D., Suraj, P., Saini, L. (2016). Big data analytics in healthcare: A survey approach. International Conference on Microelectronics, Computing and Communication, MicroCom 2016. https://doi.org/10.1109/MicroCom.2016.7522520

Russell, P., Norvig, S. (2009). Inteligencia Artificial, un enfoque moderno. Pearson.

Santacreu, L.J., Talavera, A., Aguasca, R., Galván, B.J. (2015). Sistema experto para tomar decisiones de emergencias y seguridad ante meteorología adversa. Dyna Ingenieria E Industria, 90(5), 502-512. https://doi.org/10.6036/7469

Šaur, D. (2017). Forecasting of Convective Precipitation Through NWP Models and Algorithm of Storms Prediction. Advances in Intelligent Systems and Computing, 573.

https://doi.org/10.1007/978-3-319-57261-1

Shah, H., Tairan, N., Garg, H., Ghazali, R. (2018). A Quick Gbest Guided Artificial Bee Colony algorithm for stock market prices prediction. Symmetry, 10(7).

https://doi.org/10.3390/sym10070292

Sibte, S., Abidi, R. (2001). Knowledge management in healthcare: towards. International Journal of Medical Informatics, 63, 5-18. https://doi.org/10.1016/S1386-5056(01)00167-8

Simon, H.A. (1979). Rational Decision Making in Business Organizations. The American Economic Review, 69(4), 493-513.

Soto, C. (2003). La agricultura comercial de los distritos de riego en México y su impacto en el desarrollo agrícola. Investigaciones Geográficas, Boletín Del Instituto de Geografía, Unam, 50, 173-195.

Thesmar, D., Sraer, D., Pinheiro, L., Dadson, N., Veliche, R., Greenberg, P. (2019). Combining the Power of Artificial Intelligence with the Richness of Healthcare Claims Data: Opportunities and Challenges. PharmacoEconomics, 37(6), 745-752.

https://doi.org/10.1007/s40273-019-00777-6

Turkson, R.E., Baagyere, E.Y., Wenya, G. E. (2016). A machine learning approach for predicting bank credit worthiness. 2016 3rd International Conference on Artificial Intelligence and Pattern Recognition, AIPR 2016, 81-87.

https://doi.org/10.1109/ICAIPR.2016.7585216

Van Delden, H. (2009). Integration of socio-economic and bio-physical models to support sustainable development. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, 2457-2463.

Van Delden, H., Hurkens, J. (2011). A generic integrated spatial decision support system for urban and regional planning. MODSIM 2011-19th International Congress on Modelling and Simulation-Sustaining Our Future: Understanding and Living with Uncertainty, 127-139.

https://doi.org/10.36334/modsim.2011.keynote.vandelden

Van Delden, H., Kirkby, M.J., Hahn, B.M. (2009). Towards a modelling framework for integrated assessment in arid and semi-arid regions. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, 3563-3569.

Van Delden, H., Seppelt, R., White, R., Jakeman, A. J. (2011). A methodology for the design and development of integrated models for policy support. Environmental Modelling and Software, 26(3), 266-279. https://doi.org/10.1016/j.envsoft.2010.03.021

Van Delden, H., Stuczynski, T., Ciaian, P., Paracchini, M. L., Hurkens, J., Lopatka, A., … Vanhout, R. (2010). Integrated assessment of agricultural policies with dynamic land use change modelling. Ecological Modelling, 221(18), 2153-2166.

https://doi.org/10.1016/j.ecolmodel.2010.03.023

Van Esch, P., Black, J. S., Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215–222. https://doi.org/10.1016/j.chb.2018.09.009

Vargas, C., Téllez, G., Cubillos, A., Gómez, P., Garzón, L. (2016). Análisis de los beneficiarios de la política pública de reforma agraria en el marco del desarrollo rural en Colombia (1994-2010). Pampa, 13, 31-53. https://doi.org/10.14409/pampa.v0i13.5901

Zaidi, S. Z. H., Abidi, S. S. R., Manickam, S. (2002). Leveraging intelligent agents for knowledge discovery from heterogeneous healthcare data repositories. Studies in Health Technology and Informatics, 90, 335-340.

https://doi.org/10.3233/978-1-60750-934-9-335

Zaidi, S. Z. H., Abidi, S. S. R., Manikam, S., Yu-N, C. (2004). ADMI: A multi-agent architecture to autonomously generate data mining services. 2004 2nd International IEEE Conference “Intelligent Systems” - Proceedings, 1, 273-279.

https://doi.org/10.1109/is.2004.1344680

Zamora, A.P. (2017). Aplicación de la inteligencia artificial en la inversión de campañas publicitarias Application of artificial intelligent in the investment of advertising campaigns. Revista de Ciencia, Tecnología e Innovación, 4(3), 312-322.

Cómo citar
Sánchez-Céspedes, J. M., Rodríguez-Miranda, J. P., & Salcedo-Parra, O. J. (2020). Análisis de la producción de publicaciones científicas en inteligencia artificial aplicada a la formulación de Políticas Públicas. Revista Científica, 39(3). https://doi.org/10.14483/23448350.16301
Publicado: 2020-08-31
Sección
Ciencia e ingeniería

Artículos más leídos del mismo autor/a