DOI:

https://doi.org/10.14483/23448350.17547

Publicado:

2021-05-01

Número:

Vol. 41 Núm. 2 (2021): mayo-agosto

Sección:

Educación

Tecnología y analítica del aprendizaje: una revisión a la literatura

Technology and Learning Analytics: A Literature Review

Autores/as

  • Leonardo-Emiro Contreras-Bravo Universidad Distrital “Francisco José de Caldas” https://orcid.org/0000-0003-4625-8835
  • Giovanny-Mauricio Tarazona-Bermúdez Universidad Distrital “Francisco José de Caldas”
  • José-Ignacio Rodríguez-Molano Universidad Distrital “Francisco José de Caldas” https://orcid.org/0000-0003-2581-277X

Palabras clave:

analítica, analítica del aprendizaje, aprendizaje automático, educación en ingeniería, investigación educacional (es).

Palabras clave:

analytics, educational research, engineering education, learning analytics, machine learning (en).

Descargas

Resumen (es)

Se presenta un trabajo relacionado con la analítica del aprendizaje, la cual consiste en la recopilación y el análisis de datos generados por los estudiantes y sus iteraciones, con el fin de comprender y optimizar el aprendizaje. Se plantea una revisión referencial de los últimos cinco años a través de bases de datos con el fin de identificar aspectos relativos al crecimiento de este enfoque y sus campos de aplicación en la educación superior. El volumen de investigaciones relacionadas va en aumento debido a la necesidad de investigar modelos más acertados de predicción y de nuevos algoritmos dentro del área de la ciencia de datos.

Resumen (en)

Abstract

A study concerning learning analytics is presented. This area consists of the collection and analysis of data generated by students and their iterations with the purpose of understanding and optimizing learning. By using databases, a referential review of the last five years is proposed to identify aspects related to the growth of this approach and its fields of application in higher education. The volume of related research is increasing due to the need to investigate more accurate predictive models and new algorithms in the field of data science.

Referencias

Abdullah, A., Asar, A. K., Ruzelan, N. (2020). A Novel Learning Engagement Data Model (LEDM) for Online Attendance System. IOP Conference Series: Materials Science and Engineering, 769, e012026. https://doi.org/10.1088/1757-899x/769/1/012026

Adekitan, A. I., Noma-Osaghae, E. (2019). Data Mining Approach to Predicting the Performance of First Year Student in a University Using the Admission Requirements. Education and Information Technologies, 24(2), 1527-1543. https://doi.org/10.1007/s10639-018-9839-7

Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., Hernández-García, Á. (2014). Can We Predict Success from Log Data in VLEs? Classification of Interactions for Learning Analytics and their Relation with Performance in VLE-supported F2F and Online Learning. Computers in Human Behavior, 31, 542-550. https://doi.org/10.1016/j.chb.2013.05.031

Akçapınar, G., Altun, A., Aşkar, P. (2019). Using Learning Analytics to Develop Early-Warning System for At-Risk Students. International Journal of Educational Technology in Higher Education, 16(1), e40. https://doi.org/10.1186/s41239-019-0172-z

Al-araibi, A., Mahrin, M., Yusoff, R. (2019a). Technological Aspect Factors of E-Learning Readiness in Higher Education Institutions: Delphi Technique. Education and Information Technologies, 24(1), 567-590. https://doi.org/10.1007/s10639-018-9780-9

Al-araibi, A., Mahrin, M., Yusoff, R., Chuprat, S. (2019b). A Model for Technological Aspect of E-Learning Readiness in Higher Education. Education and Information Technologies, 24(2), 1395-1431. https://doi.org/10.1007/s10639-018-9837-9

Al-Barrak M. A., Al-Razgan, M. (2016). Predicting Students Final GPA Using Decision Trees: A Case Study. International Journal of Information and Education Technology, 6(7), 528-533. https://doi.org/10.7763/IJIET.2016.V6.745

Almaiah, M. A., Al-Khasawneh, A., Althunibat, A. (2020). Exploring the Critical Challenges and Factors Influencing the E-Learning System Usage During Covid-19 Pandemic. Education and Information Technologies, 25, 5261-5280. https://doi.org/10.1007/s10639-020-10219-y

Alves, P., Morais, C., Miranda, L. (2017). Learning Analytics in Higher Education: Assessing Learning Outcomes. European Conference on E-Learning, 25-32.

Azcona, D., Hsiao, I.-H., Smeaton, A. F. (2019). Detecting Students-At-Risk in Computer Programming Classes with Learning Analytics from Students’ Digital Footprints. User Modeling and User-Adapted Interaction, 29(4), 759-788. https://doi.org/10.1007/s11257-019-09234-7

Azzi, I., Jeghal, A., Radouane, A., Yahyaouy, A., Tairi, H. (2020). A Robust Classification to Predict Learning Styles in Adaptive E-Learning Systems. Education and Information Technologies, 25(1), 437-448. https://doi.org/10.1007/s10639-019-09956-6

Back, D. A., Behringer, F., Harms, T., Plener, J., Sostmann, K., Peters, H. (2015). Survey of E-Learning Implementation and Faculty Support Strategies in a Cluster Of Mid-European Medical Schools. BMC Medical Education, 15, 1-9. https://doi.org/10.1186/s12909-015-0420-4

Brown, M. (2011). Learning Analytics: The Coming Third Wave. Educause Learning Initiative, 1(4), 1-4.

Campbell, J. DeBlois, P., Oblinger, D. (2007). Academic Analytics: A New Tool for a New Era. Educause, 42(4).

Castrillón, O. D., Sarache, W., Ruiz-Herrera, S. (2020). Predicción del rendimiento académico por medio de técnicas de inteligencia artificial. Formación Universitaria, 13(1), 93-102. https://doi.org/10.4067/s0718-50062020000100093

Chen, H.-J. (2020). Clarifying the Impact of Surprise in E-Learning System Design Based on University Students with Multiple Learning Goals Orientation. Education and Information Technologies, 25, 5873-5892. https://doi.org/10.1007/s10639-020-10249-6

Chen, L., Yoshimatsu, N., Goda, Y., Okubo, F., Taniguchi, Y., Oi, M., Konomi, S., Shimada, A., Ogata, H., Yamada, M. (2019). Direction of Collaborative Problem Solving-Based STEM Learning by Learning Analytics Approach. Research and Practice in Technology Enhanced Learning, 14(1), e24. https://doi.org/10.1186/s41039-019-0119-y

Contreras, L., Fuentes, H., Rodríguez, J. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233-246. https://doi.org/10.4067/s0718-50062020000500233

Contreras, L., Rodríguez, J., Fuentes, H. (2021). Analítica académica: nuevas herramientas aplicadas a la educación. Boletín Redipe, 10(3), 137-158. https://doi.org/10.36260/rbr.v10i3.1225

Covadonga, M. (2019). Analíticas del aprendizaje: clasificación, descripción y predicción del aprendizaje de los estudiantes. Revista Iberoamericana de Educación, 80(1), 9-11.

Daniel, B. (2015). Big Data and Analytics in Higher Education: Opportunities and Challenges. British Journal of Educational Technology, 46(5), 904-920. https://doi.org/10.1111/bjet.12230

De Arco-Paternina, L. K., Barrios-Barceló, H. de J., Parra-Ortega, G. M. (2017). Análisis de factibilidad de un sistema de educación B-learning: caso de estudio Universidad de San Buenaventura. Academia y Virtualidad, 10(2), 7-19. https://doi.org/10.18359/ravi.2706

Ellis, R., Han, F., Pardo, A. (2017). Improving Learning Analytics: Combining Observational and Self-Report Data on Student Learning. Educational Technology and Society, 20(3), 158-169.

Er, E. Gómez-Sánchez, E., Dimitriadis, Y. Bote-Lorenzo, M. L., Asensio-Pérez, J. I., Álvarez-Álvarez, S. (2019). Aligning Learning Design and Learning Analytics through Instructor Involvement: A MOOC Case Study. Interactive Learning Environments, 27(5-6), 1-15. https://doi.org/10.1080/10494820.2019.1610455

Estrada, J., Torres N., Vásquez D., Quintero R., Castellanos M. (2015). Bajo rendimiento académico en la Universidad Distrital Francisco José de Caldas. Editorial UD.

Eze, S. C., Chinedu-Eze, V. C., Bello, A. O. (2018). The Utilisation of E-Learning Facilities in the Educational Delivery System of Nigeria: A Study of M-University. International Journal of Educational Technology in Higher Education, 15(1), e34. https://doi.org/10.1186/s41239-018-0116-z

Ferguson, R. (2012). Learning Analytics: Drivers, Developments and Challenges. International Journal of Technology Enhanced, 4(5-6), 304-317.

Fernández, O. Ramos, E., Goñi, Rodríguez A. (2020). The Role of Social Support in School Adjustment during Secondary Education. Psicothema, 32(1), 100-107.

García Tinisaray, D. K. (2016). Construcción de un modelo para determinar el rendimiento académico de los estudiantes basado en learning analytics (análisis del aprendizaje), mediante el uso de técnicas multivariantes (Tesis Doctoral). Universidad de Sevilla.

Giannakos, M., Chorianopoulos, K., Chrisochoides, N. (2015). Making Sense of Video Analytics: Lessons Learned from Clickstream Interactions, Attitudes, and Learning Outcome in a Video-Assisted Course. International Review of Research in Open and Distributed Learning, 16(1), 260-284. https://doi.org/10.19173/irrodl.v16i1.1976

Gibson, D., de Freitas, S. (2016). Exploratory Analysis in Learning Analytics. Technology, Knowledge and Learning, 21(1), 5-19.

González, Ó., Aguilar, M. A., Aguilar, F. J., Lucas, M. (2018). Evaluación de entornos inmersivos 3D como herramienta de aprendizaje B-Learning. Educación XX1, 21(2), 417-440. https://doi.org/10.5944/educXX1.16204

González, L., Lugo, C. (2020). Fortalecimiento de la práctica docente con Learning Analytics: estudio de caso. Praxis & Saber, 11(25), 221-245. https://doi.org/10.19053/22160159.v11.n25.2020.9075

Gottipati, S., Shankararaman, V. (2018). Competency Analytics Tool: Analyzing Curriculum Using Course Competencies. Education and Information Technologies, 23(1), 41-60. https://doi.org/10.1007/s10639-017-9584-3

Greller, W, Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. Journal of Educational Technology & Society, 15(3), 42-57.

Guillén-Guerrero, G., Martínez, O. A. (2019). Impacto de la capacitación docente con formato b-learning sobre la metodología docente y evaluativa de los profesores. Revista Ibérica de Sistemas e Tecnologias de Informação, 21,166-176.

Hackeling, G. (2014). Mastering Machine Learning with Scikit-Learn. Packt.

Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U., Sattar, M. U. (2020). Predicting Student Performance in Higher Educational Institutions Using Video Learning Analytics and Data Mining Techniques. Applied Sciences, 10(11), e3894. https://doi.org/10.3390/app10113894

Jivet, I., Scheffel, M., Schmitz, M., Robbers, S., Specht, M., Drachsler, H. (2020). From Students with Love: An Empirical Study on Learner Goals, Self-Regulated Learning and Sense-Making of learning Analytics in Higher Education. Internet and Higher Education, 47, e100758. https://doi.org/10.1016/j.iheduc.2020.100758

Jo, I.-H., Kim, D., Yoon, M. (2015). Constructing Proxy Variables to Measure Adult Learners’ Time Management Strategies in LMS. Educational Technology & Society, 18(3), 214-225.

Johnson, L., Adams, S., Estrada, V., Freeman, A. (2015). NMC Horizon Report: Edición Educación Superior 2015. The New Media Consortium. https://library.educause.edu/-/media/files/library/2015/2/2015hrhees.pdf

Karaoglan F., Yilmaz, R. (2020). Student Opinions About Personalized Recommendation and Feedback Based on Learning Analytics. Technology, Knowledge and Learning, 25(4), 753-768. https://doi.org/10.1007/s10758-020-09460-8

Kauffman, C., Derazin, M., Asmar, A., Kibble, J. (2019). Patterns of Medical Student Engagement in a Second-Year Pathophysiology Course: Relationship to USMLE Step 1 Performance. Advances in Physiology Education, 43(4), 512-518. https://doi.org/10.1152/advan.00082.2019

Kew, S. N., Petsangsri, S., Ratanaolarn, T., Tasir, Z. (2018). Examining the Motivation Level of Students in E-Learning in Higher Education Institution in Thailand: A Case Study. Education and Information Technologies, 23(6), 2947-2967. https://doi.org/10.1007/s10639-018-9753-z

Khalil, M., Ebner, M. (2015). Learning Analytics: Principles and Constraints. World Conference on Educational Multimedia, Hypermedia and Telecommunications. https://doi.org/10.13140/RG.2.1.1733.2083

Kim, H. J., Hong, A. J., Song, H.-D. (2018). The Roles of Academic Engagement and Digital Readiness in Students’ Achievements in University E-Learning Environments. International Journal of Educational Technology in Higher Education, 16, e21. https://doi.org/10.1186/s41239-019-0152-3

Kim, J., Jo, I.-H., Park, Y. (2016). Effects of Learning Analytics Dashboard: Analyzing the Relations among Dashboard Utilization, Satisfaction, and Learning Achievement. Asia Pacific Education Review, 17(1), 13-24. https://doi.org/10.1007/s12564-015-9403-8

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews (Informe técnico). Universidad de Keele.

Kitchenham, B. A., Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Software Engineering (Informe tecnico). Universidad de Keele - Universidad de Durham.

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S. (2009). Systematic Literature Reviews in Software Engineering: A Systematic Literature Review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009

Klein, C., Lester, J., Rangwala, H., Johri, A. (2019). Technological Barriers and Incentives to Learning Analytics Adoption in Higher Education: Insights from Users. Journal of Computing in Higher Education, 31(3), 604-625. https://doi.org/10.1007/s12528-019-09210-5

Kuliya, M., Usman, S. (2020). Perceptions of E-learning among Undergraduates and Academic Staff of Higher Educational Institutions in North-Eastern Nigeria. Education and Information Technologies, 26, 1787-1811. https://doi.org/10.1007/s10639-020-10325-x

Li, S., Chen, G., Xing, W., Zheng, J., Xie, C. (2020). Longitudinal Clustering of Students’ Self-Regulated Learning Behaviors in Engineering Design. Computers and Education, 153, e103899. https://doi.org/10.1016/j.compedu.2020.103899

Long, P., Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. Educause, 46(5), 30-32.

Long, P., Siemens, G., Conole, G., Gašević, D. (2011). En Proceedings of the 1st International Conference on Learning Analytics and Knowledge.

Lonn, S., Aguilar, S., Teasley, S. (2015). Investigating Student Motivation in the Context of a Learning Analytics Intervention During a Summer Bridge Program. Computers in Human Behavior, 47, 90-97. https://doi.org/10.1016/j.chb.2014.07.013

Luo, L., Cheng, X., Wang, S., Zhang, J., Zhu, W., Yang, J., Liu, P. (2017). Blended Learning with Moodle in Medical Statistics: An Assessment of Knowledge, Attitudes and Practices Relating to E-Learning. BMC Medical Education, 17(1), 1-8. https://doi.org/10.1186/s12909-017-1009-x

Mamcenko, J., Kurilovas, E. (2017). On Using Learning Analytics to Personalise Learning in Virtual Learning Environments. European Conference on E-Learning, 1, 353-361.

Martin, F., Whitmer, J. C. (2016). Applying Learning Analytics to Investigate Timed Release in Online Learning. Technology, Knowledge and Learning, 21(1), 59-74. https://doi.org/10.1007/s10758-015-9261-9

Medina, E. C., Chunga, C. B., Armas-Aguirre, J., Grandón, E. E., Bío-Bío, U. (2020). Predictive Model to Reduce the Dropout Rate of University Students in Perú: Bayesian Networks vs. Decision Trees. 15th Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/cisti49556.2020.9141095

Mirabolghasemi, M., Choshaly, S. H., Iahad, N. A. (2019). Using the HOT-Fit Model to Predict the Determinants of E-Learning Readiness in Higher Education: A Developing Country’s Perspective. Education and Information Technologies, 24(6), 3555-3576. https://doi.org/10.1007/s10639-019-09945-9

Muljana, P. S., Luo, T. (2020). Utilizing Learning Analytics in Course Design: Voices from Instructional Designers in Higher Education. Journal of Computing in Higher Education, 33, 206-234. https://doi.org/10.1007/s12528-020-09262-y

Murnion, P., Helfert, M. (2013). Academic Analytics in Quality Assurance Using Organisational Analytical Capabilities. En UK Academy for Information Systems Conference Proceedings 2013.

Ngan, S.-C., Law, K. (2015). Exploratory Network Analysis of Learning Motivation Factors in E-Learning Facilitated Computer Programming Courses. The Asia-Pacific Education Researcher, 24(4), 705-717. https://doi.org/10.1007/s40299-014-0223-0

Nguyen, Q., Tempelaar, D., Rienties, B., Giesbers, B. (2016). What Learning Analytics-Based Prediction Models Tell Us about Feedback Preferences of Students. Quarterly Review of Distance Education, 17(3), 13-33.

Norris, D. M., Lefrere, P. (2011). Transformation through Expeditionary Change Using Online Learning and Competence-Building Technologies. Research in Learning Technology, 19(1), 61-72. https://doi.org/10.3402/rlt.v19i1.17105

Núñez, E., Monclúz, I. M., Ravina, R. (2019). El impacto de la utilización de la modalidad B-Learning en la educación superior. Alteridad: Revista de Educación, 14(1), 26-39. https://doi.org/10.17163/alt.v14n1.2019.02

Olsen, J., Sharma, K., Rummel, N., Aleven, V. (2020). Temporal Analysis of Multimodal Data to Predict Collaborative Learning Outcomes. British Journal of Educational Technology, 51(5), 1527-1547. https://doi.org/10.1111/bjet.12982

Pérez, E. L., Salcedo, E. (2015). Estructuras de decisión a partir del aprendizaje autorregulado en ambientes B- Learning. Tecnura, 19, 15-24.

Pham, L., Limbu, Y. B., Bui, T. K., Nguyen, H. T., Pham, H. T. (2019). Does E-Learning Service Quality Influence E-Learning Student Satisfaction and Loyalty? Evidence from Vietnam. International Journal of Educational Technology in Higher Education, 16(1), e7. https://doi.org/10.1186/s41239-019-0136-3

Pineda, J., Tamayo, L. (2016). E-moderating and E-tivities: The Implementation of a Workshop to Develop Online Teaching Skills in In-service Teachers. Profile Issues in Teachers’ Professional Development, 18(1), 97-114. https://doi.org/10.15446/profile.v18n1.44269

Queiroga, E. M., Lopes, J. L., Kappel, K., Aguiar, M., Araújo, R. M., Munoz, R., Villarroel, R., Cechinel, C. (2020). A Learning Analytics Approach to Identify Students at Risk of Dropout: A Case Study with a Technical Distance Education Course. Applied Sciences, 10(11), e3998. https://doi.org/10.3390/app10113998

Rajak, A. N., Abu Bakar, N. N., Lajim, N. D., Kamarulzaman, N. H., Karim, S. N. Almunawar, M. N. (2018). E-Learning Services Acceptance in Higher Educational Institutes: A Case Study in Brunei. Education and Information Technologies, 23, 2341-2361. https://doi.org/10.1007/s10639-018-9720-8

Salajegheh, A., Jahangiri, A., Dolan-Evans, E., Pakneshan, S. (2016). A Combination of Traditional Learning and E-Learning Can Be More Effective on radiological Interpretation Skills in Medical Students: A Pre- and Post-Intervention Study. BMC Medical Education, 16(1), 1-7. https://doi.org/10.1186/s12909-016-0569-5

Schroeder, U. (2009). Web-Based Learning - Yes We Can! En M. Spaniol, Q. Li, R. Klamma, R. Lau (eds.), Advances in Web Based Learning - ICWL 2009 (pp. 25-33). Springer. https://doi.org/10.1007/978-3-642-03426-8_3

Seoane, A. (2014). Formalización de un modelo de formación online basado en el factor humano y la presencia docente mediante un lenguaje de patrón (Tesis Doctoral). Universidad de Salamanca. https://doi.org/10.14201/gredos.123342

Stewart, C. (2017). Learning Analytics: Shifting from Theory to Practice. Journal on Empowering Teaching Excellence, 1(1), e10. https://doi.org/10.15142/T3G63W

Tahir, R., Wang, A. I. (2020). Codifying Game-Based Learning: Development and Application of LEAGUE Framework for Learning Games. Electronic Journal of E-Learning, 18(1), 69-87. https://doi.org/10.34190/EJEL.20.18.1.006

Tenpipat, W., Akkarajitsakul, K. (2020). Student Dropout Prediction: A KMUTT Case Study. En International Conference on Big Data Analytics and Practices.

Teo, T., Kim, S. L., Jiang, L. (2020). E-Learning Implementation in South Korea: Integrating Effectiveness and Legitimacy Perspectives. Information Systems Frontiers, 22(2), 511-528. https://doi.org/10.1007/s10796-018-9874-3

Tomasevic, N., Gvozdenovic, N., Vranes, S. (2020). An Overview and Comparison of Supervised Data Mining Techniques for Student Exam Performance Prediction. Computers and Education, 143, e103676. https://doi.org/10.1016/j.compedu.2019.103676

Urteaga, I., Siri, L., Garófalo, G. (2020). Predicción temprana de deserción mediante aprendizaje automático en cursos profesionales en línea. Revista Iberoamericana de Educación a Distancia, 23(2), 147-167. https://doi.org/10.5944/ried.23.2.26356

Vesin, B., Mangaroska, K., Giannakos, M. (2018). Learning in Smart Environments: User-Centered Design and Analytics of an Adaptive Learning System. Smart Learning Environments, 5(1), e24. https://doi.org/10.1186/s40561-018-0071-0

Viberg, O., Hatakka, M., Bälter, O., Mavroudi, A. (2018). The Current Landscape of Learning Analytics in Higher Education. Computers in Human Behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027

Wang, Q., Wu, W., Qi, Y. (2018). A Learning Analytic Model for Smart Classroom. En L. Hou, H. Xie (Eds.), Web and Big Data: APWeb-WAIM 2018 International Workshops (pp. 219-229). Springer.

Wen, C.-T., Chang, C.-J., Chang, M.-H., Fan Chiang, S.-H., Liu, C.-C., Hwang, F.-K., Tsai, C.-C. (2018). The Learning Analytics of Model-Based Learning Facilitated by a Problem-Solving Simulation Game. Instructional Science, 46(6), 847-867. https://doi.org/10.1007/s11251-018-9461-5

Wiyono, S., Abidin, T. (2019). Comparative Study of Machine Learning KNN, SVM, and Decision Tree Algorithm to Predict Student’s. International Journal of Research Granthaalayah, 7(1), 190-196. https://doi.org/10.5281/zenodo.2550651

Yen, C.-H., Chen, I.-C., Lai, S.-C., Chuang, Y.-R. (2015). An Analytics-Based Approach to Managing Cognitive Load by Using Log Data of Learning Management Systems and Footprints of Social Media. Journal of Educational Technology & Society, 18(4), 141-158.

Zacharias, D., Athanasios, A. (2020). Monitoring of the Results through a Survey Concerning the Socio-Economic Characteristics of the Elderly Using Geographic Information Systems (GIS): A Case Study in Greece. International Journal of Innovation and Economic Development, 6(3), 36-45. https://doi.org/10.18775/ijied.1849-7551-7020.2015.63.2004

Cómo citar

APA

Contreras-Bravo, L.-E., Tarazona-Bermúdez, G.-M., & Rodríguez-Molano, J.-I. (2021). Tecnología y analítica del aprendizaje: una revisión a la literatura. Revista Científica, 41(2), 150–168. https://doi.org/10.14483/23448350.17547

ACM

[1]
Contreras-Bravo, L.-E., Tarazona-Bermúdez, G.-M. y Rodríguez-Molano, J.-I. 2021. Tecnología y analítica del aprendizaje: una revisión a la literatura. Revista Científica. 41, 2 (may 2021), 150–168. DOI:https://doi.org/10.14483/23448350.17547.

ACS

(1)
Contreras-Bravo, L.-E.; Tarazona-Bermúdez, G.-M.; Rodríguez-Molano, J.-I. Tecnología y analítica del aprendizaje: una revisión a la literatura. Rev. Cient. 2021, 41, 150-168.

ABNT

CONTRERAS-BRAVO, L.-E.; TARAZONA-BERMÚDEZ, G.-M.; RODRÍGUEZ-MOLANO, J.-I. Tecnología y analítica del aprendizaje: una revisión a la literatura. Revista Científica, [S. l.], v. 41, n. 2, p. 150–168, 2021. DOI: 10.14483/23448350.17547. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/17547. Acesso em: 15 jun. 2021.

Chicago

Contreras-Bravo, Leonardo-Emiro, Giovanny-Mauricio Tarazona-Bermúdez, y José-Ignacio Rodríguez-Molano. 2021. «Tecnología y analítica del aprendizaje: una revisión a la literatura». Revista Científica 41 (2):150-68. https://doi.org/10.14483/23448350.17547.

Harvard

Contreras-Bravo, L.-E., Tarazona-Bermúdez, G.-M. y Rodríguez-Molano, J.-I. (2021) «Tecnología y analítica del aprendizaje: una revisión a la literatura», Revista Científica, 41(2), pp. 150–168. doi: 10.14483/23448350.17547.

IEEE

[1]
L.-E. Contreras-Bravo, G.-M. Tarazona-Bermúdez, y J.-I. Rodríguez-Molano, «Tecnología y analítica del aprendizaje: una revisión a la literatura», Rev. Cient., vol. 41, n.º 2, pp. 150–168, may 2021.

MLA

Contreras-Bravo, L.-E., G.-M. Tarazona-Bermúdez, y J.-I. Rodríguez-Molano. «Tecnología y analítica del aprendizaje: una revisión a la literatura». Revista Científica, vol. 41, n.º 2, mayo de 2021, pp. 150-68, doi:10.14483/23448350.17547.

Turabian

Contreras-Bravo, Leonardo-Emiro, Giovanny-Mauricio Tarazona-Bermúdez, y José-Ignacio Rodríguez-Molano. «Tecnología y analítica del aprendizaje: una revisión a la literatura». Revista Científica 41, no. 2 (mayo 1, 2021): 150–168. Accedido junio 15, 2021. https://revistas.udistrital.edu.co/index.php/revcie/article/view/17547.

Vancouver

1.
Contreras-Bravo L-E, Tarazona-Bermúdez G-M, Rodríguez-Molano J-I. Tecnología y analítica del aprendizaje: una revisión a la literatura. Rev. Cient. [Internet]. 1 de mayo de 2021 [citado 15 de junio de 2021];41(2):150-68. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/17547

Descargar cita

Visitas

46

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.