DOI:
https://doi.org/10.14483/23448350.20093Publicado:
2023-01-02Número:
Vol. 46 Núm. 1 (2023): Enero-Abril 2023Sección:
Ingeniería y TecnologíaReview of Nitride-Based Multifunctional PVD-Deposited Coatings
Revisión de recubrimientos multifuncionales a base de nitruro depositados por PVD
Palabras clave:
Cathodic arc, nanostructured coating, physical vapor deposition, sputtering (en).Palabras clave:
arco catódico, deposición física en fase vapor, recubrimientos nanoestructurados, sputtering (es).Descargas
Resumen (en)
The success of a functional coating is intrinsically linked to the improvement of its surface properties, as it is the surface that will be in direct contact with the environment and mechanical stresses when the material is used in severe wear, fatigue, or corrosion applications. It has been shown, for example, by increasing mechanical properties, that factors such as surface hardness increase the durability of the coating/substrate system. Consequently, current research on the design and development of multifunctional coatings for surface engineering within mechanical systems must address surface treatment and modification techniques. This article is a bibliographic review of coatings with industrial applications regarding transition metal nitrides deposited with physical vapor deposition (PVD) techniques such as sputtering and cathodic arc.
Resumen (es)
El éxito de un recubrimiento funcional está intrínsecamente ligado al mejoramiento de sus propiedades superficiales, ya que es la superficie la que estará en contacto directo con el entorno y los esfuerzos mecánicos en caso de que el material sea usado en aplicaciones de desgaste, fatiga o corrosión severos. Se ha demostrado, por ejemplo, mediante el aumento de las propiedades mecánicas, que factores como la dureza superficial aumentan la durabilidad del sistema recubrimiento/sustrato. En consecuencia, las investigaciones actuales sobre el diseño y desarrollo de recubrimientos multifuncionales para ingeniería de superficies dentro de sistemas mecánicos deben abordar las técnicas de tratamientos y modificaciones superficiales. Este artículo es una revisión bibliográfica sobre recubrimientos con aplicaciones industriales en relación con los nitruros metálicos de transición depositados con técnicas de deposición física en fase de vapor (PVD) como el sputtering y el arco catódico.
Referencias
An, T., Tian, H. W., Wen, M., Zheng, W. T. (2008). Structures and mechanical properties of TiN/SiNx multilayer films deposited by magnetron sputtering at different N2/Ar gas flow ratios. Vacuum, 82(11), 1187-1190. https://doi.org/10.1016/j.vacuum.2008.02.004 DOI: https://doi.org/10.1016/j.vacuum.2008.02.004
Arab Pour Yazdi, M., Lomello, F., Wang, J., Sanchette, F., Dong, Z., White, T., Wouters, Y., Schuster, F., Billard, A. (2014). Properties of TiSiN coatings deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering. Vacuum, 109, 43-51. https://doi.org/10.1016/j.vacuum.2014.06.023 DOI: https://doi.org/10.1016/j.vacuum.2014.06.023
Ardila-Téllez, L. C., Sánchez-Moreno, J. M., Moreno-Téllez, C. M. (2014). Effect of silicon addition on microstructure and mechanical properties of chromium and titanium based coatings. Revista Facultad de Ingeniería, 23(37), 9-21. https://doi.org/10.19053/01211129.2786 DOI: https://doi.org/10.19053/01211129.2786
Baptista, A., Silva, F. J. G., Porteiro, J., Míguez, J. L., Pinto, G., Fernandes, L. (2018). On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manufacturing, 17, 746-757. https://doi.org/10.1016/J.PROMFG.2018.10.125 DOI: https://doi.org/10.1016/j.promfg.2018.10.125
Barshilia, H. C., Ghosh, M., Shashidhara, Ramakrishna, R., Rajam, K. S. (2010). Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering. Applied Surface Science, 256(21), 6420-6426. https://doi.org/10.1016/j.apsusc.2010.04.028 DOI: https://doi.org/10.1016/j.apsusc.2010.04.028
Barshilia, H. C., Yogesh, K., Rajam, K. S. (2008). Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering. Vacuum, 83(2), 427-434. https://doi.org/10.1016/j.vacuum.2008.04.075 DOI: https://doi.org/10.1016/j.vacuum.2008.04.075
Borra, J. P. (2006). Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. Journal of Physics D: Applied Physics, 39(2), e19. https://doi.org/10.1088/0022-3727/39/2/R01 DOI: https://doi.org/10.1088/0022-3727/39/2/R01
Capote-Rodríguez, G., Marulanda-Cardona, D. M., Olaya-Flórez, J. J. (2015). Producción, caracterización y aplicaciones de recubrimientos producidos por plasma (1st ed). Universidad Nacional de Colombia, Bogotá D. C., Colombia.
Chang, Y. Y., Hsiao, C. Y. (2009). High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings. Surface and Coatings Technology, 204(6-7), 992-996. https://doi.org/10.1016/j.surfcoat.2009.04.009 DOI: https://doi.org/10.1016/j.surfcoat.2009.04.009
Chawla, V., Jayaganthan, R., Chandra, R. (2010). Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films. Journal of Materials Science and Technology, 26(8), 673-678. https://doi.org/10.1016/S1005-0302(10)60105-3 DOI: https://doi.org/10.1016/S1005-0302(10)60105-3
Chen, L., Du, Y., Wang, A. J., Wang, S. Q., Zhou, S. Z. (2009). Effect of Al content on microstructure and mechanical properties of Ti – Al – Si – N nanocomposite coatings. International Journal of Refractory Metals and Hard Materials, 27(4), 718-721. https://doi.org/10.1016/j.ijrmhm.2008.12.002 DOI: https://doi.org/10.1016/j.ijrmhm.2008.12.002
Chu, X., Barnett, S. A. (1995). Model of superlattice yield stress and hardness enhancements. Journal of Applied Physics, 77(9), 4403-4411. https://doi.org/10.1063/1.359467 DOI: https://doi.org/10.1063/1.359467
Curtins, H. (1995). PLATIT: A new industrial approach to cathodic arc coating technology. Surface and Coatings Technology, 76-77(Part 2), 632-639. https://doi.org/10.1016/0257-8972(95)02552-9 DOI: https://doi.org/10.1016/02578-9729(50)25529-
Ding, X. Z., Zeng, X. T., Liu, Y. C., Yang, Q., Zhao, L. R. (2004). Structure and mechanical properties of Ti–Si–N films deposited by combined DC/RF reactive unbalanced magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(6), 2351-2355. https://doi.org/10.1116/1.1798771 DOI: https://doi.org/10.1116/1.1798771
Diserens, M., Patscheider, J., Lévy, F. (1998). Improving the properties of titanium nitride by incorporation of silicon. Surface and Coatings Technology, 108-109, 241-246. https://doi.org/10.1016/S0257-8972(98)00560-X DOI: https://doi.org/10.1016/S0257-8972(98)00560-X
Diserens, M., Patscheider, J., Lévy, F. (1999). Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films. Surface and Coatings Technology, 120-121, 158-165. https://doi.org/10.1016/S0257-8972(99)00481-8 DOI: https://doi.org/10.1016/S0257-8972(99)00481-8
Dobrzanski, L., M, S., Pawlyta, M., Konieczny, J. (2010). The investigations of (Ti,Al)N and (Al,Ti)N coatings obtained by PVD process onto sintered cutting tools. Journal of Achievements in Materials and Manufacturing Engineering, 42(1-2), 148-155
Domínguez-Crespo, M. A., Torres-Huerta, A. M., Rodríguez, E., González-Hernández, A., Brachetti-Sibaja, S. B., Dorantes-Rosales, H. J., López-Oyama, A. B. (2018). Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering. Journal of Alloys and Compounds, 746, 688-698. https://doi.org/10.1016/j.jallcom.2018.02.319 DOI: https://doi.org/10.1016/j.jallcom.2018.02.319
Estupiñán, F. A., Moreno, C. M., Olaya, J. J., Ardila, L. C. (2021). Wear resistance of TiAlCrSiN coatings deposited by means of the co-sputtering technique. Lubricants, 9(6), e64. https://doi.org/10.3390/lubricants9060064 DOI: https://doi.org/10.3390/lubricants9060064
Gong, M., Chen, J., Deng, X., Wu, S. (2017). Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate. International Journal of Refractory Metals and Hard Materials, 69(August), 209-214. https://doi.org/10.1016/j.ijrmhm.2017.08.003 DOI: https://doi.org/10.1016/j.ijrmhm.2017.08.003
Hwang, Y. J., Hong, S. H., Kim, Y. S., Park, H. J., Jeong, Y. B., Kim, J. T., Kim, K. B. (2018). Influence of silicon content on microstructure and mechanical properties of Ti-Cr-Si alloys. Journal of Alloys and Compounds, 737, 53-57. https://doi.org/10.1016/j.jallcom.2017.12.048 DOI: https://doi.org/10.1016/j.jallcom.2017.12.048
Jiang, N., Shen, Y. G., Mai, Y. W., Chan, T., Tung, S. C. (2004). Nanocomposite Ti-Si-N films deposited by reactive unbalanced magnetron sputtering at room temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 106(2), 163-171. https://doi.org/10.1016/j.mseb.2003.09.033 DOI: https://doi.org/10.1016/j.mseb.2003.09.033
Kabir, M. S., Munroe, P., Zhou, Z., Xie, Z. (2016). Structure and mechanical properties of graded Cr/CrN/CrTiN coatings synthesized by close field unbalanced magnetron sputtering. Surface and Coatings Technology, 309, 779-789. https://doi.org/10.1016/j.surfcoat.2016.10.087 DOI: https://doi.org/10.1016/j.surfcoat.2016.10.087
Kelly, P. J., Arnell, R. D. (2000). Magnetron sputtering: A review of recent developments and applications. Vacuum, 56(3), 159-172. https://doi.org/10.1016/S0042-207X(99)00189-X DOI: https://doi.org/10.1016/S0042-207X(99)00189-X
Keunecke, M., Stein, C., Bewilogua, K., Koelker, W., Kassel, D., van den Berg, H. (2010). Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering. Surface and Coatings Technology, 205(5), 1273-1278. https://doi.org/10.1016/j.surfcoat.2010.09.023 DOI: https://doi.org/10.1016/j.surfcoat.2010.09.023
Kim, S. K., van Vinh, P., Lee, J. W. (2008). Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition. Surface and Coatings Technology, 202(22-23), 5395-5399. https://doi.org/10.1016/j.surfcoat.2008.06.020 DOI: https://doi.org/10.1016/j.surfcoat.2008.06.020
Lindfors, P. A., Mularie, W. M., Wehner, G. K. (1986). Cathodic arc deposition technology. Surface and Coatings Technology, 29(4), 275-290. https://doi.org/10.1016/0257-8972(86)90001-0 DOI: https://doi.org/10.1016/0257-8972(86)90001-0
Lin, J., Zhang, X., Ou, Y., Wei, R. (2015). The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings. Surface and Coatings Technology, 277, 58-66. https://doi.org/10.1016/j.surfcoat.2015.07.013 DOI: https://doi.org/10.1016/j.surfcoat.2015.07.013
Liu, W., Chu, Q., He, R., Huang, M., Wu, H., Jiang, Q., Chen, J., Deng, X., Wu, S. (2018a). Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools. Ceramics International, 44(2), 2209-2215. https://doi.org/10.1016/j.ceramint.2017.10.177
Liu, W., Chu, Q., He, R., Huang, M., Wu, H., Jiang, Q., Chen, J., Deng, X., Wu, S. (2018b). Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools. Ceramics International, 44(2), 2209-2215. https://doi.org/10.1016/j.ceramint.2017.10.177 DOI: https://doi.org/10.1016/j.ceramint.2017.10.177
Macías, H. A., Yate, L., Coy, L. E., Aperador, W., Olaya, J. J. (2019). Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films. Ceramics International, 45(14), 17363-17375. https://doi.org/10.1016/J.CERAMINT.2019.05.295 DOI: https://doi.org/10.1016/j.ceramint.2019.05.295
Markopoulos, A. (2013). Machining Processes. In SpringerBriefs in Applied Sciences and Technology (pp. 1-9). https://doi.org/10.1007/978-1-4471-4330-7_1 DOI: https://doi.org/10.1007/978-1-4471-4330-7_1
Mattox, D. M. (2010). Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering). In D. M. Mattox (Ed.), Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (Second Edi, pp. 237-286). William Andrew Publishing. https://doi.org/10.1016/B978-0-8155-2037-5.00007-1 DOI: https://doi.org/10.1016/B978-0-8155-2037-5.00007-1
Mattox, D. M. (1998). Handbook of physical vapor deposition (PVD) processing. Elsevier DOI: https://doi.org/10.1016/B978-081551422-0.50008-5
MatWeb (2022) - Material Property Data. (2020a). https://www.matweb.com/index.aspx
Mayrhofer, P. H., Rachbauer, R., Holec, D., Rovere, F., Schneider, J. M. (2014). Protective transition metal nitride coatings. In Elsevier (Eds.), Comprehensive Materials Processing (vol. 4, pp. 355-388). Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00423-4 DOI: https://doi.org/10.1016/B978-0-08-096532-1.00423-4
Mei, F., Shao, N., Hu, X., Li, G., Gu, M. (2005). Microstructure and mechanical properties of reactively sputtered Ti-Si-N nanocomposite films. Materials Letters, 59(19-20), 2442-2445. https://doi.org/10.1016/j.matlet.2005.03.019 DOI: https://doi.org/10.1016/j.matlet.2005.03.019
Miletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., Kovač, J. (2014). Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering. Surface and Coatings Technology, 241, 105-111. https://doi.org/10.1016/j.surfcoat.2013.10.050 DOI: https://doi.org/10.1016/j.surfcoat.2013.10.050
Olaya, J., Cifuentes, H. (2018). anticorrosive properties of chromium coatings on AISI H13 steel by gaseous nitriding in vacuum. Tecciencia, 13(24), 43-52 DOI: https://doi.org/10.18180/tecciencia.2018.24.5
Oliveira, J. C., Manaia, A., Cavaleiro, A. (2008). Hard amorphous Ti-Al-N coatings deposited by sputtering. Thin Solid Films, 516(15), 5032-5038. https://doi.org/10.1016/j.tsf.2008.02.006 DOI: https://doi.org/10.1016/j.tsf.2008.02.006
Ou, Y. X., Lin, J., Tong, S., Sproul, W. D., Lei, M. K. (2016). Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surface and Coatings Technology, 293, 21-27. https://doi.org/10.1016/j.surfcoat.2015.10.009 DOI: https://doi.org/10.1016/j.surfcoat.2015.10.009
PalDey, S., Deevi, S. C., Alford, T. L. (2004). Cathodic arc deposited thin film coatings based on TiAl intermetallics. Intermetallics, 12(7-9), 985-991. https://doi.org/10.1016/j.intermet.2004.02.021 DOI: https://doi.org/10.1016/j.intermet.2004.02.021
Park, I. W., Choi, S. R., Suh, J. H., Park, C. G., Kim, K. H. (2004). Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system. Thin Solid Films, 447-448(03), 443-448. https://doi.org/10.1016/S0040-6090(03)01122-2 DOI: https://doi.org/10.1016/S0040-6090(03)01122-2
Pierson, H. O. (2013). Handbook of refractory carbides & nitrides: Properties, characteristics, processing, and apps. Elsevier.
Popescu, M., Sava, F., Velea, A., Lorinczi, A. (2009). Crystalline-amorphous and amorphous-amorphous transitions in phase-change materials. Journal of Non-Crystalline Solids, 355(37-42), 1820-1823. https://doi.org/10.1016/J.JNONCRYSOL.2009.04.053 DOI: https://doi.org/10.1016/j.jnoncrysol.2009.04.053
Prakash Sharma, V., Sharma, U., Chattopadhyay, M., Shukla, V. N. (2018). Advance applications of nanomaterials: A review. Materials Today: Proceedings, 5(2), 6376-6380. https://doi.org/10.1016/J.MATPR.2017.12.248 DOI: https://doi.org/10.1016/j.matpr.2017.12.248
Randhawa, H., Johnson, P. C. (1987). Technical note: A review of cathodic arc plasma deposition processes and their applications. Surface and Coatings Technology, 31(4), 303-318. https://doi.org/10.1016/0257-8972(87)90157-5 DOI: https://doi.org/10.1016/0257-8972(87)90157-5
Ribeiro, E., Rebouta, L., Carvalho, S., Vaz, F., Fuentes, G. G., Rodriguez, R., Zazpe, M., Alves, E., Goudeau, P., Rivière, J. P. (2004). Characterization of hard DC-sputtered Si-based TiN coatings: The effect of composition and ion bombardment. Surface and Coatings Technology, 188-189(1-3), 351-357. https://doi.org/10.1016/j.surfcoat.2004.08.020 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.020
Sarin, V. K. (2014). Comprehensive hard materials (vol. I). Elsevier.
Stueber, M., Barna, P. B., Simmonds, M. C., Albers, U., Leiste, H., Ziebert, C., Hovsepian, P., Gee, I. (2005). Constitution and microstructure of magnetron sputtered nanocomposite coatings in the system Ti – Al – N – C., 493, 104-112. https://doi.org/10.1016/j.tsf.2005.07.290 DOI: https://doi.org/10.1016/j.tsf.2005.07.290
Sui, X., Li, G., Jiang, C., Wang, K., Zhang, Y., Hao, J., Wang, Q. (2018). Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting. Ceramics International, 44(5), 5629-5635. https://doi.org/10.1016/j.ceramint.2017.12.210 DOI: https://doi.org/10.1016/j.ceramint.2017.12.210
Vanegas P., H. S., Calderón V., S., Alfonso O., J. E., Olaya F., J. J., Ferreira, P. J., Carvalho, S. (2019). Influence of silicon on the microstructure and the chemical properties of nanostructured ZrN-Si coatings deposited by means of pulsed-DC reactive magnetron sputtering. Applied Surface Science, 481, 1249-1259. https://doi.org/10.1016/J.APSUSC.2019.03.128 DOI: https://doi.org/10.1016/j.apsusc.2019.03.128
Veprek, S., Männling, H. D., Jilek, M., Holubar, P. (2004). Avoiding the high-temperature decomposition and softening of (Al1-xTix)N coatings by the formation of stable superhard nc-(Al1-xTix)N/a-Si3 N4 nanocomposite. Materials Science and Engineering A, 366(1), 202-205. https://doi.org/10.1016/j.msea.2003.08.052 DOI: https://doi.org/10.1016/j.msea.2003.08.052
Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Männling, H.-D., Nesladek, P., Dollinger, G., Bergmaier, A. (2000). Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si 3 N 4 /a- and nc-TiSi 2 nanocomposites with H V =80 to =<105 GPa. Surface & Coatings Technology, 133-134, 152-159. https://doi.org/10.1016/S0257-8972(00)00957-9 DOI: https://doi.org/10.1016/S0257-8972(00)00957-9
VepYek, S. (1997). Conventional and new approaches towards the design of novel superhard materials. Surface & Coatings Technology, 97, 15-22. https://doi.org/10.1016/S0257-8972(97)00279-X DOI: https://doi.org/10.1016/S0257-8972(97)00279-X
Vetter, J., Eriksson, A. O., Reiter, A., Derflinger, V., Kalss, W. (2021). Quo vadis: Alcr‐based coatings in industrial applications. Coatings, 11(3), e344. https://doi.org/10.3390/COATINGS11030344 DOI: https://doi.org/10.3390/coatings11030344
Vetter, J., Perry, A. J. (1993). Advances in cathodic arc technology using electrons extracted from the vacuum arc. Surface and Coatings Technology, 61(1-3), 305-309. https://doi.org/10.1016/0257-8972(93)90243-H DOI: https://doi.org/10.1016/0257-8972(93)90243-H
Wang, C. F., Ou, S. F., Chiou, S. Y. (2014). Microstructures of TiN, TiAlN and TiAlVN coatings on AISI M2 steel deposited by magnetron reactive sputtering. Oral Oncology, 50(10), 2559-2565. https://doi.org/10.1016/S1003-6326(14)63383-5 DOI: https://doi.org/10.1016/S1003-6326(14)63383-5
Wang, T., Zhang, G., Jiang, B. (2016). Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering. Applied Surface Science, 363, 217-224. https://doi.org/10.1016/j.apsusc.2015.12.005 DOI: https://doi.org/10.1016/j.apsusc.2015.12.005
Wu, W., Chen, W., Yang, S., Lin, Y., Zhang, S., Cho, T. Y., Lee, G. H., Kwon, S. C. (2015). Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Applied Surface Science, 351, 803-810. https://doi.org/10.1016/j.apsusc.2015.05.191 DOI: https://doi.org/10.1016/j.apsusc.2015.05.191
Xi, Y., Gao, K., Pang, X., Yang, H., Xiong, X., Li, H., Volinsky, A. A. (2017). Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceramics International, 43(15), 11992-11997. https://doi.org/10.1016/j.ceramint.2017.06.050 DOI: https://doi.org/10.1016/j.ceramint.2017.06.050
Yamamoto, T., Hasegawa, H., Suzuki, T., Yamamoto, K. (2005). Effects of thermal annealing on phase transformation and microhardness of (TixCryAlz)N films. Surface and Coatings Technology, 200(1-4), 321-325. https://doi.org/10.1016/j.surfcoat.2005.02.048 DOI: https://doi.org/10.1016/j.surfcoat.2005.02.048
Zhou, W., Liang, J., Zhang, F., Mu, J., Zhao, H. (2014). A comparative research on TiAlN coatings reactively sputtered from powder and from smelting TiAl targets at various nitrogen flow rates. Applied Surface Science, 313, 10-18. https://doi.org/10.1016/j.apsusc.2014.05.053 DOI: https://doi.org/10.1016/j.apsusc.2014.05.053
Zhou, Z. F., Tam, P. L., Shum, P. W., Li, K. Y. (2009). High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering. Thin Solid Films, 517(17), 5243-5247. https://doi.org/10.1016/j.tsf.2009.03.115 DOI: https://doi.org/10.1016/j.tsf.2009.03.115
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2023 Luis-Carlos Ardila-Tellez, Giovany Orozco-Hernandez, Fredy Estupiñan-Mongui, Carlos-Mauricio Moreno-Téllez, Jhon-Jairo Olaya-Florez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El (los) autor(es) al enviar su artículo a la Revista Científica certifica que su manuscrito no ha sido, ni será presentado ni publicado en ninguna otra revista científica.
Dentro de las políticas editoriales establecidas para la Revista Científica en ninguna etapa del proceso editorial se establecen costos, el envío de artículos, la edición, publicación y posterior descarga de los contenidos es de manera gratuita dado que la revista es una publicación académica sin ánimo de lucro.