DOI:
https://doi.org/10.14483/23448350.21959Published:
11/30/2024Issue:
Vol. 51 No. 3 (2024): September-December 2024 (Continuos Publication)Section:
Research ArticlesPerspectivas teóricas y metodológicas sobre creatividad en Educación STEAM: una revisión sistemática
Theoretical and Methodological Perspectives on Creativity in STEAM Education: A Systematic Review
Keywords:
Creativity, STEAM, iinterdisciplinary approach, pedagogical research, education, educational innovation, systematic literature review (en).Keywords:
Creatividad, STEAM, enfoque interdisciplinario, investigación pedagógica, educación, innovación educacional, revisión sistemática de literatura (es).Downloads
Abstract (es)
La educación STEAM (science, technology, engineering, arts, and mathematics) propende por una formación integral de sujetos creativos e innovadores, pero pocos estudios dan cuenta de ello. Este trabajo presenta una revisión sistemática de la literatura en bases de datos como Scopus, Web of Science, Science Direct y ERIC, encontrando 45 unidades de análisis entre los años 2010 y 2024 (agosto) que evalúan la creatividad de los estudiantes en el marco de propuestas STEAM. En estas unidades de análisis se identifica que 1), a partir del año 2015, incrementan los estudios que evalúan la creatividad en el contexto de la educación STEAM, principalmente en Asia y América; 2) la mayor parte de las investigaciones (53.3 %) concibe la educación STEAM como un enfoque educativo interdisciplinar que, con la incorporación del arte, favorece el desarrollo de la creatividad, entendida como una actividad productiva de algo novedoso y original (46.6 %) y una manera inédita y eficaz de resolver problemas (37.7 %); 3) el 55.5 % de las investigaciones evalúan la creatividad desde una perspectiva psicológica, y prevalecen los estudios cuantitativos (55.5 %) por sobre los cualitativos (22.2 %); y 4) entre las estrategias didácticas más utilizadas están el aprendizaje basado en proyectos y el aprendizaje basado en indagación. Los resultados sugieren que STEAM es concebido como un enfoque educativo interdisciplinario con grandes posibilidades para desarrollar la creatividad, la cual fue valorada a partir de instrumentos predominantemente cuantitativos e individualizados. Es necesario explorar metodologías cualitativas y enfoques socioculturales y sistémicos en la educación STEAM que permitan analizar los actos creativos desde una perspectiva holística.
Abstract (en)
STEAM (science, technology, engineering, arts, and mathematics) education strives towards the comprehensive
training of creative and innovative individuals, but few studies address this issue. This paper presents a systematic
review of the literature from databases such as Scopus, Web of Science, Science Direct, and ERIC, which found
45 units of analysis between 2010 and 2024 (August) that evaluate the creativity of students within the framework
of STEAM proposals. These units of analysis allow identifying that 1), starting in 2015, there is an increase in the number of studies that evaluate creativity in the context of STEAM education, mainly in Asia and America; 2) most
of the research (53.3%) conceives STEAM education as an interdisciplinary educational approach that, with the
incorporation of art, favors the development of creativity, which is understood as an activity involving the production
of something novel and original (46.6%) and as an unprecedented and effective way to solve problems (37.7%); 3) 55.5% of the research evaluates creativity from a psychological perspective, wherein quantitative studies prevail (55.5%) over qualitative ones (22.2%); and 4) the most used didactic strategies are project-based learning and inquirybased learning. The results suggest that STEAM is conceived as an interdisciplinary educational approach with great potential for developing creativity, which was assessed based on predominantly quantitative and individualized instruments. It is necessary to explore qualitative methodologies and sociocultural and systemic approaches in STEAM education that allow analyzing creative acts from a holistic perspective.
References
Aguilera, D., Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: A systematic literature review. Education Sciences, 11(7), 331. http://dx.doi.org/10.3390/educsci11070331
Alexopoulos, A. N., Paolucci, P., Sotiriou, S. A., Bogner, F. X., Dorigo, T., Fedi, M., Menasce, D., Michelotto, M., Paoletti, S., Scianitti, F. (2021). The colours of the Higgs boson: a study in creativity and science motivation among high-school students in Italy. Smart Learning Environments, 8(1), 1-23. https://doi.org/10.1186/s40561-021-00169-4
Baughman, W. A., Mumford, M. D. (1995). Process-analytic models of creative capacities: Operations influencing the combination and reorganization processes. Creativity Research Journal, 8, 37–62. https://doi.org/10.1207/s15326934crj0801_4
Beghetto, R. A., Kaufman, J. C. (2013). Fundamentals of creativity. Educational leadership, 70(5), 10-15.
Casado Fernández, R., Checa Romero, M. (2020). Robótica y proyectos STEAM: desarrollo de la creatividad en las aulas de educación primaria. Pixel-Bit. https://doi.org/10.12795/pixelbit.73672
Casado Fernández, R., Checa-Romero, M. (2023). Creatividad, pensamiento crítico y trabajo en equipo en educación primaria: un enfoque interdisciplinar a través de proyectos STEAM. Revista Complutense de Educación, 34(3), 629-640.
Chang, C. Y., Du, Z., Kuo, H. C., Chang, C. C. (2023). Investigating the impact of design thinking-based STEAM PBL on students’ creativity and computational thinking. IEEE Transactions on Education, 66(6), 673-681.
Cheng, L., Wang, M., Chen, Y., Niu, W., Hong, M., Zhu, Y. (2022). Design my music instrument: A project-based science, technology, engineering, arts, and mathematics program on the development of creativity. Frontiers in Psychology, 12, 763948. https://doi.org/10.3389/fpsyg.2021.763948
Chien, Y. H., Chu, P. Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16, 1047-1064. https://doi.org/10.1007/s10763-017-9832-4
Cilleruelo, L., Zubiaga, A. (2014). Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología. Jornadas de Psicodidáctica, 18(1), 1-18.
Connor, A. M., Karmokar, S., Whittington, C. (2015). From STEM to STEAM: Strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogy (iJEP), 5(2), 37-47. https://doi.org/10.3991/ijep.v5i2.4458
Conradty, C., Bogner, F. X. (2018). From STEM to STEAM: How to monitor creativity. Creativity Research Journal, 30(3), 233-240. https://doi.org/10.1080/10400419.2018.1488195
Conradty, C., Bogner, F. X. (2019). From STEM to STEAM: Cracking the code? How creativity & motivation interacts with inquiry-based learning. Creativity Research Journal, 31(3), 284-295. https://doi.org/10.1080/10400419.2019.1641678
Conradty, C., Bogner, F. X. (2020). STEAM teaching professional development works: Effects on students’ creativity and motivation. Smart Learning Environments, 7(1), 1-20. https://doi.org/10.1186/s40561-020-00132-9
Conradty, C., Sotiriou, S. A., Bogner, F. X. (2020). How creativity in STEAM modules intervenes with self-efficacy and motivation. Education Sciences, 10(3), 1-15. https://doi.org/10.3390/educsci10030070
Csikszentmihalyi, M. (1997). Flow and the psychology of discovery and invention. Harper Perennial Press.
Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity. En R. J. Sternberg, (Ed.), Handbook of Creativity (pp. 315-334). Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.018
Csikszentmihalyi, M. (2010). Creativity. Flow and the psychology of discovery and invention. Harper. https://doi.org/10.1037/10517-126
Csikszentmihalyi, M., Wolfe, R. (2014). New conceptions and research approaches to creativity: Implications of a systems perspective for creativity in education. En M. Csikszentmihalyi (Ed.), The Systems Model of Creativity: The Collected Works of Mihaly Csikszentmihalyi (pp. 161-184). Springer.
De la Torre, S., Morais, M., Tejada, G. (2010). Investigar y evaluar la creatividad. Modelos y alternativas. Educreate.
ElSayary, A., Zein, R., Antonio, L. S. (2022). Using interactive technology to develop preservice teachers’ STEAM competencies in early childhood education program. EURASIA Journal of Mathematics, Science and Technology Education, 18(2), 1-12. https://doi.org/10.29333/ejmste/11649
Engelman, S., Magerko, B., McKlin, T., Miller, M., Edwards, D., Freeman, J. (2017). Creativity in authentic STEAM education with EarSketch [Artículo de conferencia]. ACM SIGCSE Technical Symposium on Computer Science Education. https://doi.org/10.1145/3017680.3017763
Erol, A., Erol, M., & Başaran, M. (2022). The effect of STEAM education with tales on problem solving and creativity skills. European Early Childhood Education Research Journal, 31 (2), 243-258. https://doi.org/10.1080/1350293X.2022.2081347
Escalona, T. Z., Cartagena, Y. G., González, D. R. (2018). Educación para el sujeto del siglo XXI: principales características del enfoque STEAM desde la mirada educacional. Contextos: Estudios de Humanidades y Ciencias Sociales, 41, 1-21.
Fernández-Morante, C., Fernández-de-la-Iglesia, J. D. C., Cebreiro, B., Latorre-Ruiz, E. (2022). ATS-STEM: Global teaching methodology to improve competences of secondary education students. Sustainability, 14(12), 6986, 1-13. https://doi.org/10.3390/su14126986
Gallagher, D., Grimm, L. R. (2018). Making an impact: The effects of game making on creativity and spatial processing. Thinking Skills and Creativity, 28, 138-149. https://doi.org/10.1016/j.tsc.2018.05.001
García Fuentes, O., Raposo Rivas, M., Martínez Figueira, M. E. (2023). El enfoque educativo STEAM: una revisión de la literatura. Revista Complutense de Educación, 34(1), 191-202
González-Pérez, L. I., Ramírez-Montoya, M.S. (2022). Components of education 4.0 in 21st century skills frameworks: Systematic review. Sustainability, 14, 1493. https://doi.org/10.3390/su14031493
Guilford, J. (1950). Creativity. American Psychologist, 5, 444-454. https://doi.org/10.1037/h0063487
Guyotte, K. W., Sochacka, N. W., Costantino, T. E., Kellam, N. N., Walther, J. (2015). Collaborative creativity in STEAM: Narratives of art education students’ experiences in transdisciplinary spaces. International Journal of Education & the Arts, 16(15), 1-39.
Harris, A., De Bruin, L. R. (2018). Secondary school creativity, teacher practice and STEAM education: An international study. Journal of Educational Change, 19, 153-179. https://doi.org/10.1007/s10833-017-9311-2
Hawkins, J., Yamada, A., Yamada, R., Jacob, W. (2018). New directions of STEM research and learning in the world ranking movement a comparative perspective. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-98666-1
Hong, S. O., Jung, E. J., Lee, S. Y. (2016). Development of the A-STEAM type technological models with creative and characteristic contents for infants based on smart devices. Indian Journal of Science and Technology, 9, 44.
Hsiao, H. S., Chen, J. C., Chen, J. H., Zeng, Y. T., Chung, G. H. (2022). An assessment of junior high school students’ knowledge, creativity, and hands-on performance using PBL via cognitive–affective interaction model to achieve STEAM. Sustainability, 14(9), 5582. https://doi.org/10.3390/su14095582
Huang, P. S., Peng, S. L., Chen, H. C., Tseng, L. C., Hsu, L. C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25, 1-9. https://doi.org/10.1016/j.tsc.2017.06.001
Hunter‐Doniger, T. (2021). Early childhood STEAM education: The joy of creativity, autonomy, and play. Art Education, 74(4), 22-27. https://doi.org/10.1080/00043125.2021.1905419
Iammartino, R., Bischoff, J., Willy, C., Shapiro, P. (2016). Emergence in the US science, technology, engineering, and mathematics (STEM) workforce: An agent-based model of worker attrition and group size in high-density STEM organizations. Complex & Intelligent Systems, 2, 23-34. https://doi.org/10.1007/s40747-016-0015-7
John-Steiner, V., Moran, S. (2003). Creativity in the making: Vygotsky’s contemporary contribution to the dialectic of creativity & development. En R. K. Sawyer (Ed.), Creativity and Development (pp. 61-90). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195149005.003.0003
Kim, E. S., Chu, H. E., Song, J. (2023). Development and impact of an intercultural STEAM program on science classroom creativity. Asia-Pacific Science Education, 1, 106-141.
Klimenko, O. (2008). La creatividad como un desafío para la educación del siglo XXI. Educación y Educadores, 11(2), 191-210
Lage-Gómez, C., Ros, G. (2023). How transdisciplinary integration, creativity and student motivation interact in three STEAM projects for gifted education? Gifted Education International, 39(2), 247-262.
Lage-Gómez, C., Ros, G. (2024). On the interrelationships between diverse creativities in primary education STEAM projects. Thinking Skills and Creativity, 51, 101456.
Lee, J. C., Wang, C. L., Yu, L. C., Chang, S. H. (2016). The effects of perceived support for creativity on individual creativity of design-majored students: A multiple-mediation model of savoring. Journal of Baltic Science Education, 15(2), 232. https://doi.org/10.33225/jbse/16.15.232
Leroy, A., Romero, M. (2021). Teachers’ creative behaviors in STEAM activities with modular robotics. Frontiers in Education 6, 642147. https://doi.org/10.3389/feduc.2021.642147
Lu, S. Y., Lo, C. C., Syu, J. Y. (2022b). Project-based learning oriented STEAM: The case of micro–bit paper-cutting lamp. International Journal of Technology and Design Education, 32(5), 2553-2575. https://doi.org/10.1007/s10798-021-09714-1
Lu, S. Y., Wu, C. L., Huang, Y. M. (2022a). Evaluation of disabled STEAM-students’ education learning outcomes and creativity under the UN sustainable development goal: project-based learning oriented STEAM curriculum with micro:bit. Sustainability, 14(2),1-12. https://doi.org/10.3390/su14020679
Lubart, T. I. (1999). Creativity across cultures. En R. J Stenberg (Ed.), Handbook of Creativity (pp. 339-350). Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.019
Manrique-Losada, B., Gómez-Álvarez, M. C., González-Palacio, L. (2020). Estrategia de transformación para la formación en informática: hacia el desarrollo de competencias en educación básica y media para la Industria 4.0 en Medellín-Colombia. Revista Ibérica de Sistemas e Tecnologias de Informação, 39, 1-17. https://doi.org/10.170i3/risti.39.1-17
Marín-Ríos, A., Cano-Villa, J., Mazo-Castañeda, A. (2023). Apropiación de la educación STEM/STEAM en Colombia: una revisión a la producción de trabajos de grado. Revista Científica, 47(2), 55-70.
McKlin, T., Magerko, B., Lee, T., Wanzer, D., Edwards, D., Freeman, J. (2018). Authenticity and personal creativity: How EarSketch affects student persistence [Artículo de conferencia]. 49th ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/3159450.3159523
Mierdel, J., Bogner, F. X. (2020). Simply InGEN (E) ious! How creative DNA modeling can enrich classic hands-on experimentation. Journal of Microbiology & Biology Education, 21(2), 1-10. https://doi.org/10.1128/jmbe.v21i2.1923
Miller, A. L., Dumford, A. D. (2016). Creative cognitive processes in higher education. Journal of Creative Behaviour, 50(4), 282-293. https://doi.org/10.1002/jocb.77
Napal, M. F., Ripa, M. I. Z. (2019). STEM. La enseñanza de las ciencias en la actualidad. Dextra Editorial.
Oner, A. T., Nite, S. B., Capraro, R. M., Capraro, M. M. (2016). From STEM to STEAM: Students’ beliefs about the use of their creativity. The STEAM Journal, 2(2), 1-14. https://doi.org/10.5642/steam.20160202.06
Ozkan, G., Umdu Topsakal, U. (2021). Exploring the effectiveness of STEAM design processes on middle school students’ creativity. International Journal of Technology and Design Education, 31, 95-116. https://doi.org/10.1007/s10798-019-09547-z
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372(71), 1-9. https://doi.org/10.1136/bmj.n71
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books. https://worrydream.com/refs/Papert_1980_-_Mindstorms,_1st_ed.pdf
Park, J. H., Niu, W., Cheng, L., Allen, H. (2021). Fostering creativity and critical thinking in college: A cross-cultural investigation. Frontiers in Psychology, 12, 1-12. https://doi.org/10.3389/fpsyg.2021.760351
Perignat, E., Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43. https://doi.org/10.1016/j.tsc.2018.10.002
Pifarre, M. (2019). Using interactive technologies to promote a dialogic space for creating collaboratively: A study in secondary education. Thinking Skills and Creativity, 32, 1-16. https://doi.org/10.1016/j.tsc.2019.01.004
Píriz Giménez, N., López Larrama, M. N., Tucci, J. (2023). Enseñanza de las ciencias desde las Aulas Creativas. ANEP CFE.
Rahmawati, Y., Utomo, E., Mardiah, A. (2021). The integration of STEAM-project-based learning to train students critical thinking skills in science learning through electrical bell project. Journal of Physics: Conference Series, 2098(1), 012040. https://doi.org/10.1088/1742-6596/2098/1/012040
Rufaida, S., Nurfadilah, N. (2021). The effectiveness of hypercontent module to improve creative thinking skills of prospective physics teachers. Journal of Physics: Conference Series, 1918 (2), e022022.
Salmi, H., Thuneberg, H., Bogner, F. X., Fenyvesi, K. (2021). Individual creativity and career choices of pre-teens in the context of a Math-Art learning event. Open Education Studies, 3(1), 147-156. https://doi.org/10.1515/edu-2020-0147
Sanabria, J. C., Arámburo-Lizárraga, J. (2017). Enhancing 21st century skills with AR: Using the gradual immersion method to develop collaborative creativity. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 487-501. https://doi.org/10.12973/eurasia.2017.00627a
Sánchez-Meca, J., Botella, J. (2010). Revisiones sistemáticas y meta-análisis: herramientas para la práctica profesional. Papeles del Psicólogo, 31(1), 7-17.
Sánchez-Serrano, S., Pedraza-Navarro, I., Beltrán, A. I. (2022). ¿De qué hablo cuando hablo de innovación educativa? Una revisión sistemática. En S. Carrascal y N. Camuñas (Coords.), Docencia y aprendizaje. Competencias, identidad y formación del profesorado (pp. 587-606). Tirant Humanidades.
Saorín, J. L., Melian-Díaz, D., Bonnet, A., Carrera, C. C., Meier, C., De La Torre-Cantero, J. (2017). Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, 23, 188-198. https://doi.org/10.1016/j.tsc.2017.01.004
Shen, S., Wang, S., Qi, Y., Wang, Y., Yan, X. (2021). Teacher suggestion feedback facilitates creativity of students in STEAM education. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.723171
Sternberg, R. J. (2009). The nature of creativity. En E. Grigorenko & J. Kaufman (Eds.), The Essential Sternberg: Essays on Intelligence, Psychology and Education (pp. 103-118). Springer.
Sternberg, R. J., Lubart, T. I. (1995). Investing in creativity. Psychological Inquiry, 4(3), 229-232. https://doi.org/10.1207/s15327965pli0403_16
Stoelinga, S.R., Silk, Y., Reddy, P., Rahman, N., (2015). Final evaluation report: Turnaround arts initiative. President's Committee on the Arts and the Humanities. https://www.giarts.org/sites/default/files/Turnaround-Arts-Initiative-Final-Evaluation-Report.pdf
Stroud A., Baines L. (2019). Inquiry, investigative processes, art, and writing in STEAM. En M. Khine & S. Areepattamannil (Eds.), STEAM Education. Springer.
Taylor, P. C. (2016). Why is a STEAM curriculum perspective crucial to the 21st century? Murdoch University.
Thuneberg, H. M., Salmi, H. S., Bogner, F. X. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. https://doi.org/10.1016/j.tsc.2018.07.003
Timotheou, S., Loannou, A. (2021). Collective creativity in STEAM Making activities. The Journal of Educational Research, 114(2), 130-138. https://doi.org/10.1080/00220671.2021.1873721
Torrance, E. P. (1962). Guiding creative talent. Prentice Hall. https://doi.org/10.1037/13134-000
Torrance, E.P. (1966). The torrance tests of creative thinking-norms-technical manual research. Personnel Press.
Tran N. H., Huang, C. F., Hung, J. F. (2021a) Exploring the effectiveness of STEAM-based courses on junior high school students’ scientific creativity. Frontiers in Education, 6(666792), 1-8. https://doi.org/10.3389/feduc.2021.666792
Tran, N. H., Huang, C. F., Hsiao, K. H., Lin, K. L., Hung, J. F. (2021b). Investigation on the influences of STEAM-based curriculum on scientific creativity of elementary school students. Frontiers in Education, 6(694516), 1-8. https://doi.org/10.3389/feduc.2021.694516
Wandari, G. A., Wijaya, A. F. C., & Agustin, R. R. (2018). The Effect of STEAM-based learning on students' concept mastery and creativity in learning light and optics. Journal of Science Learning, 2(1), 26-32. https://doi.org/10.17509/jsl.v2i1.12878
Wannapiroon, N., Petsangsri, S. (2020). Effects of STEAMification model in flipped classroom learning environment on creative thinking and creative innovation. TEM Journal, 9(4), 1647-1655. https://doi.org/10.18421/TEM94-42
Weng, X., Ng, O. L., Cui, Z., Leung, S. (2022). Creativity development with problem-based digital making and block-based programming for science, technology, engineering, arts, and mathematics learning in middle school contexts. Journal of Educational Computing Research, 61(2), 1-25. https://doi.org/10.1177/07356331221115661
Wilson, H. E., Song, H., Johnson, J., Presley, L., Olson, K. (2021). Effects of transdisciplinary STEAM lessons on student critical and creative thinking. The Journal of Educational Research, 114(5), 445-457. https://doi.org/10.1080/00220671.2021.1975090
Yakman, G., Lee, H. (2012). Exploring the Exemplary STEAM Education in the U.S. as a Practical Educational Framework for Korea. Journal of The Korean Association for Science Education, 39(6), 1072-1086. https://doi.org/10.14697/jkase.2012.32.6.1072
York, P., Zhang, S., Yang, M., Muthukumar, V. (2022). Crochet: Engaging secondary school girls in art for STEAM’s sake. Science Education International, 33(4), 392-399. https://doi.org/10.33828/sei.v33.i4.6
Zaqiah, Q. Y., Hasanah, A., Heryati, Y. (2024). The role of steam education in improving student collaboration and creativity: A case study in Madrasah. Journal Pendidikan Islam, 10(1), 101-112.
Zhan, Z., Yao, X., Li, T. (2022). Effects of association interventions on students’ creative thinking, aptitude, empathy, and design scheme in a STEAM course: considering remote and close association. International Journal of Technology and Design Education, 33, 1773-1795. https://doi.org/10.1007/s10798-022-09801-x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Jhon-Daniel Pabón-Rúa, Sonia-Yaneth López-Ríos, M´´onica-Eliana Zapata-Cardona
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.