DOI:

https://doi.org/10.14483/23448350.22448

Published:

08/25/2025

Issue:

Vol. 52 No. 1 (2025): January-April 2025

Section:

Research Articles

Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models

Reducción de escala para la predicción de lluvia en el Valle del Río Aburrá y sus cuencas abastecedoras en Antioquia (Colombia) mediante modelos ocultos de Markov no homogéneos

Authors

Keywords:

escenarios de cambio climático, downscaling, modelos ocultos de Markov no homogéneos, modelos de circulación global (es).

Keywords:

climate change scenarios, downscaling, non-homogenous hidden Markov models, global circulation models (en).

Downloads

Abstract (en)

One of the main issues in projecting climate change scenarios is the coarse scale of global circulation model products.This work employs the statistical downscaling methodology to obtain station-level precipitation series for three climate change scenarios in the region of the Aburrá River and its supplying watersheds, by means of non-homogenous hidden Markov models, using atmospheric variables such as wind, relative humidity, and atmospheric pressure as precipitation predictors. Two approaches are proposed: an annual model and a quarterly one. Each model is trained using precipitation stations to obtain the best number of hidden states that adequately represent the climatology of the area via the BIC criterion. Based on the climatology represented in the states, much better results were obtained with the quarterly model, whose calibrations were used for downscaling the three climate change scenarios. Slight differences were found in the monthly averages, as well as station-scale differences between the probability distributions of daily rainfall for the analyzed scenarios, indicating local alterations in precipitation due to climate change.

Abstract (es)

Uno de los principales problemas al proyectar escenarios de cambio climático es la escala gruesa de los productos de los modelos de circulación global. En este artículo se emplea la metodología de downscaling estadístico para obtener series de precipitación a escala de estación en tres escenarios de cambio climático en la región del Río Aburrá y sus cuencas abastecedoras, a través de modelos ocultos de Markov no homogéneos, utilizando variables atmosféricas como el viento, la humedad relativa y la presión atmosférica como predictores de precipitación. Se proponen dos enfoques: un modelo anual y uno trimestral. Cada modelo es entrenado mediante estaciones de precipitación para obtener el mejor número de estados ocultos que representen adecuadamente la climatología de la zona a través del criterio BIC. Con base en la climatología representada en los estados, se obtuvieron resultados mucho mejores con el modelo trimestral, cuyas calibraciones se utilizaron para el downscaling de los tres escenarios de cambio climático. Se encontraron ligeras diferencias en los promedios mensuales, así como diferencias a escala de estación entre las distribuciones de probabilidad de lluvia diaria para los escenarios analizados, indicando alteraciones locales en la precipitación por efectos del cambio climático.

References

Arias, P. A., Ortega, G., Villegas, L. D., & Martínez, J. A. (2021). Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia, 100, 75-96.

https://bibliotecadigital.udea.edu.co/entities/publication/0c68b277-9463-400b-a6c1 a81c028e1f0d

Bellone, E., Hughes, J. P., & Guttorp, P. (2000). A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Research, 15(1), 1-12. https://doi.org/10.3354/cr015001

Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541-560.

https://doi.org/10.1175/1520-0442(1992)005%3C0541:AIOMFF%3E2.0.CO;2

Cadavid Valencia, S. (2015). Metodología para estimar caudales medios y extremos en escenarios de

cambio climático [Master’s thesis, Universidad Nacional de Colombia].

https://repositorio.unal.edu.co/items/0fff47a0-e373-479a-9711-5de1b6941cf9

Chou, S. C., Marengo, J. A., Lyra, A. A., Sueiro, G., Pesquero, J. F., Alves, L. M., kay, G., Betts, R., Chagas, D. J., Gomes, J. L., Bustamante, J. F., & Tavares, P. (2012). Downscaling of South America's present climate driven by4-member HadCM3 runs. Climate Dynamics, 38(3), 635-653. https://doi.org/10.1007/s00382-011-1002-8

Fu, G., Charles, S. P., & Kirshner, S. (2013). Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for southeastern Australia. Hydrological Processes, 27(25), 3663-3673. https://doi.org/10.1002/hyp.9483

Greene, A. M., Robertson, A. W., Smyth, P., & Triglia, S. (2011). Downscaling projections of Indian monsoon rainfall using a non-homogeneous hidden Markov model. Quarterly Journal of the Royal Meteorological Society,137(655), 347-359. https://doi.org/10.1002/qj.788

Güiza-Villa, N., Gay García, C., & Ospina-Noreña, J. (2020). Effects of climate change on water resources, indices, and related activities in Colombia. In P. T. Chandrasekaran, M. S. Javaid, & A. Sadiq (Eds.), Resources of Water (art. 90652). IntechOpen. https://doi.org/10.5772/intechopen.90652

Hughes, J. P., & Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535-1546.

https://doi.org/10.1029/93WR02983

IPCC (2014). Part A: Global and sectoral aspects (contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change).

https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-FrontMatterA_FINAL.pdf

Johnson, B., Kumar, V., & Krishnamurti, T. N. (2014). Rainfall anomaly prediction using statistical downscaling in a multimodel superensemble over tropical South America. Climate Dynamics, 43(7), 1731-1752. https://www.researchgate.net/publication/264157405_Rainfall_anomaly_prediction_using_statistical_downscaling_in_a_multimodel_superensemble_over_tropical_South_America

Koki, C., Leonardos, S., & Piliouras, G. (2022). Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models. Research in International Business and Finance, 59, 101554. https://doi.org/10.1016/j.ribaf.2021.101554

Liu, W., Fu, G., Liu, C., & Charles, S. P. (2013). A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 111(3-4), 585-600. https://doi.org/10.1007/s00704-012-0692-0

López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., & Schellekens, J. (2018). Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the Magdalena River basin in Colombia. Frontiers in Earth Science, 6, 68.

https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00068/full

Pineda, L. E., & Willems, P. (2016). Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific–Andean River Basins in Ecuador and Peru Using a nonhomogeneous Hidden Markov model. Journal of Hydrometeorology, 17(2), 481-498.

DOI: https://doi.org/10.1175/JHM-D-15-0040.1

Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: Implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5), 3609-3629. https://doi.org/10.1007/s00382-018-4403-0

Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model. Journal of Climate, 17(22), 4407-4424.

https://doi.org/10.1175/JCLI-3216.1

Rojo, J. (2018). Spatial and temporal characterization of Colombia’s hydroclimatology [Doctoral thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69017

Rojo, J., Lall, U., & Mesa, O. J. (2017). A hidden model of daily precipitation over western Colombia. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-18003.pdf

Rojo, J., & Mesa, O. J. (2018). MJO Influence over northern South American observations and modeling. https://doi.org/10.13140/RG.2.2.35057.10087

Rojo, J., Mesa, O. J., & Lall, U. (2020). ENSO dynamics, trends and prediction using machine learning. Weather and Forecasting, 35(5), 2061-2081. https://doi.org/10.1175/WAF-D-20-0031.1

Verbist, K., Robertson, A. W., Cornelis, W. M., & Gabriels, D. (2010). Seasonal predictability of daily rainfall characteristics in central northern Chile for dry-land management. Journal of Applied Meteorology and Climatology, 49(9), 1938-1955.

Wilcke, R. A. I., Mendlik, T., & Gobiet, A. (2013). Multi-variable error correction of regional climate models. Climatic Change, 120, 871-887. https://doi.org/10.1007/s10584-013-0845-x

Yin, S., & Chen, D. (2020, June 30). Weather generators. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.768

Zhang, M., Rojo, J., Yan, L., Mesa, O. J., & Lall, U. (2022). Hidden tropical pacific sea surface temperature states reveal global predictability for monthly precipitation for sub-season to annual scales. Geophysical Research Letters, 49(20), e2022GL099572. https://doi.org/10.1029/2022GL099572

How to Cite

APA

Osorio Giraldo, D. F., Carvajal Serna, L. F., and Rojo Hernández, J. D. (2025). Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models. Revista Científica, 52(1), 5–24. https://doi.org/10.14483/23448350.22448

ACM

[1]
Osorio Giraldo, D.F. et al. 2025. Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models. Revista Científica. 52, 1 (Aug. 2025), 5–24. DOI:https://doi.org/10.14483/23448350.22448.

ACS

(1)
Osorio Giraldo, D. F.; Carvajal Serna, L. F.; Rojo Hernández, J. D. Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models. Rev. Cient. 2025, 52, 5-24.

ABNT

OSORIO GIRALDO, Diego Felipe; CARVAJAL SERNA, Luis Fernando; ROJO HERNÁNDEZ, Juli´án David. Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models. Revista Científica, [S. l.], v. 52, n. 1, p. 5–24, 2025. DOI: 10.14483/23448350.22448. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22448. Acesso em: 9 jan. 2026.

Chicago

Osorio Giraldo, Diego Felipe, Luis Fernando Carvajal Serna, and Juli´án David Rojo Hernández. 2025. “Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models”. Revista Científica 52 (1):5-24. https://doi.org/10.14483/23448350.22448.

Harvard

Osorio Giraldo, D. F., Carvajal Serna, L. F. and Rojo Hernández, J. D. (2025) “Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models”, Revista Científica, 52(1), pp. 5–24. doi: 10.14483/23448350.22448.

IEEE

[1]
D. F. Osorio Giraldo, L. F. Carvajal Serna, and J. D. Rojo Hernández, “Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models”, Rev. Cient., vol. 52, no. 1, pp. 5–24, Aug. 2025.

MLA

Osorio Giraldo, Diego Felipe, et al. “Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models”. Revista Científica, vol. 52, no. 1, Aug. 2025, pp. 5-24, doi:10.14483/23448350.22448.

Turabian

Osorio Giraldo, Diego Felipe, Luis Fernando Carvajal Serna, and Juli´án David Rojo Hernández. “Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models”. Revista Científica 52, no. 1 (August 25, 2025): 5–24. Accessed January 9, 2026. https://revistas.udistrital.edu.co/index.php/revcie/article/view/22448.

Vancouver

1.
Osorio Giraldo DF, Carvajal Serna LF, Rojo Hernández JD. Downscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models. Rev. Cient. [Internet]. 2025 Aug. 25 [cited 2026 Jan. 9];52(1):5-24. Available from: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22448

Download Citation

Visitas

91

Dimensions


PlumX


Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
No
11%
Metric
This journal
Other journals
Articles accepted 
37%
33%
Days to publication 
417
145

Indexed in

Editor & editorial board
profiles
Loading...