DOI:
https://doi.org/10.14483/23448350.22448Published:
08/25/2025Issue:
Vol. 52 No. 1 (2025): January-April 2025Section:
Research ArticlesDownscaling for Rainfall Prediction in the Aburrá River Valley and its Supplying Watersheds in Antioquia (Colombia) Using Non-Homogeneous Hidden Markov Models
Reducción de escala para la predicción de lluvia en el Valle del Río Aburrá y sus cuencas abastecedoras en Antioquia (Colombia) mediante modelos ocultos de Markov no homogéneos
Keywords:
escenarios de cambio climático, downscaling, modelos ocultos de Markov no homogéneos, modelos de circulación global (es).Keywords:
climate change scenarios, downscaling, non-homogenous hidden Markov models, global circulation models (en).Downloads
Abstract (en)
One of the main issues in projecting climate change scenarios is the coarse scale of global circulation model products.This work employs the statistical downscaling methodology to obtain station-level precipitation series for three climate change scenarios in the region of the Aburrá River and its supplying watersheds, by means of non-homogenous hidden Markov models, using atmospheric variables such as wind, relative humidity, and atmospheric pressure as precipitation predictors. Two approaches are proposed: an annual model and a quarterly one. Each model is trained using precipitation stations to obtain the best number of hidden states that adequately represent the climatology of the area via the BIC criterion. Based on the climatology represented in the states, much better results were obtained with the quarterly model, whose calibrations were used for downscaling the three climate change scenarios. Slight differences were found in the monthly averages, as well as station-scale differences between the probability distributions of daily rainfall for the analyzed scenarios, indicating local alterations in precipitation due to climate change.
Abstract (es)
Uno de los principales problemas al proyectar escenarios de cambio climático es la escala gruesa de los productos de los modelos de circulación global. En este artículo se emplea la metodología de downscaling estadístico para obtener series de precipitación a escala de estación en tres escenarios de cambio climático en la región del Río Aburrá y sus cuencas abastecedoras, a través de modelos ocultos de Markov no homogéneos, utilizando variables atmosféricas como el viento, la humedad relativa y la presión atmosférica como predictores de precipitación. Se proponen dos enfoques: un modelo anual y uno trimestral. Cada modelo es entrenado mediante estaciones de precipitación para obtener el mejor número de estados ocultos que representen adecuadamente la climatología de la zona a través del criterio BIC. Con base en la climatología representada en los estados, se obtuvieron resultados mucho mejores con el modelo trimestral, cuyas calibraciones se utilizaron para el downscaling de los tres escenarios de cambio climático. Se encontraron ligeras diferencias en los promedios mensuales, así como diferencias a escala de estación entre las distribuciones de probabilidad de lluvia diaria para los escenarios analizados, indicando alteraciones locales en la precipitación por efectos del cambio climático.
References
Arias, P. A., Ortega, G., Villegas, L. D., & Martínez, J. A. (2021). Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia, 100, 75-96.
https://bibliotecadigital.udea.edu.co/entities/publication/0c68b277-9463-400b-a6c1 a81c028e1f0d
Bellone, E., Hughes, J. P., & Guttorp, P. (2000). A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Research, 15(1), 1-12. https://doi.org/10.3354/cr015001
Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541-560.
https://doi.org/10.1175/1520-0442(1992)005%3C0541:AIOMFF%3E2.0.CO;2
Cadavid Valencia, S. (2015). Metodología para estimar caudales medios y extremos en escenarios de
cambio climático [Master’s thesis, Universidad Nacional de Colombia].
https://repositorio.unal.edu.co/items/0fff47a0-e373-479a-9711-5de1b6941cf9
Chou, S. C., Marengo, J. A., Lyra, A. A., Sueiro, G., Pesquero, J. F., Alves, L. M., kay, G., Betts, R., Chagas, D. J., Gomes, J. L., Bustamante, J. F., & Tavares, P. (2012). Downscaling of South America's present climate driven by4-member HadCM3 runs. Climate Dynamics, 38(3), 635-653. https://doi.org/10.1007/s00382-011-1002-8
Fu, G., Charles, S. P., & Kirshner, S. (2013). Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for southeastern Australia. Hydrological Processes, 27(25), 3663-3673. https://doi.org/10.1002/hyp.9483
Greene, A. M., Robertson, A. W., Smyth, P., & Triglia, S. (2011). Downscaling projections of Indian monsoon rainfall using a non-homogeneous hidden Markov model. Quarterly Journal of the Royal Meteorological Society,137(655), 347-359. https://doi.org/10.1002/qj.788
Güiza-Villa, N., Gay García, C., & Ospina-Noreña, J. (2020). Effects of climate change on water resources, indices, and related activities in Colombia. In P. T. Chandrasekaran, M. S. Javaid, & A. Sadiq (Eds.), Resources of Water (art. 90652). IntechOpen. https://doi.org/10.5772/intechopen.90652
Hughes, J. P., & Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535-1546.
https://doi.org/10.1029/93WR02983
IPCC (2014). Part A: Global and sectoral aspects (contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change).
https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-FrontMatterA_FINAL.pdf
Johnson, B., Kumar, V., & Krishnamurti, T. N. (2014). Rainfall anomaly prediction using statistical downscaling in a multimodel superensemble over tropical South America. Climate Dynamics, 43(7), 1731-1752. https://www.researchgate.net/publication/264157405_Rainfall_anomaly_prediction_using_statistical_downscaling_in_a_multimodel_superensemble_over_tropical_South_America
Koki, C., Leonardos, S., & Piliouras, G. (2022). Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models. Research in International Business and Finance, 59, 101554. https://doi.org/10.1016/j.ribaf.2021.101554
Liu, W., Fu, G., Liu, C., & Charles, S. P. (2013). A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 111(3-4), 585-600. https://doi.org/10.1007/s00704-012-0692-0
López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., & Schellekens, J. (2018). Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the Magdalena River basin in Colombia. Frontiers in Earth Science, 6, 68.
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00068/full
Pineda, L. E., & Willems, P. (2016). Multisite downscaling of seasonal predictions to daily rainfall characteristics over Pacific–Andean River Basins in Ecuador and Peru Using a nonhomogeneous Hidden Markov model. Journal of Hydrometeorology, 17(2), 481-498.
DOI: https://doi.org/10.1175/JHM-D-15-0040.1
Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: Implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5), 3609-3629. https://doi.org/10.1007/s00382-018-4403-0
Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model. Journal of Climate, 17(22), 4407-4424.
https://doi.org/10.1175/JCLI-3216.1
Rojo, J. (2018). Spatial and temporal characterization of Colombia’s hydroclimatology [Doctoral thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69017
Rojo, J., Lall, U., & Mesa, O. J. (2017). A hidden model of daily precipitation over western Colombia. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-18003.pdf
Rojo, J., & Mesa, O. J. (2018). MJO Influence over northern South American observations and modeling. https://doi.org/10.13140/RG.2.2.35057.10087
Rojo, J., Mesa, O. J., & Lall, U. (2020). ENSO dynamics, trends and prediction using machine learning. Weather and Forecasting, 35(5), 2061-2081. https://doi.org/10.1175/WAF-D-20-0031.1
Verbist, K., Robertson, A. W., Cornelis, W. M., & Gabriels, D. (2010). Seasonal predictability of daily rainfall characteristics in central northern Chile for dry-land management. Journal of Applied Meteorology and Climatology, 49(9), 1938-1955.
Wilcke, R. A. I., Mendlik, T., & Gobiet, A. (2013). Multi-variable error correction of regional climate models. Climatic Change, 120, 871-887. https://doi.org/10.1007/s10584-013-0845-x
Yin, S., & Chen, D. (2020, June 30). Weather generators. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.768
Zhang, M., Rojo, J., Yan, L., Mesa, O. J., & Lall, U. (2022). Hidden tropical pacific sea surface temperature states reveal global predictability for monthly precipitation for sub-season to annual scales. Geophysical Research Letters, 49(20), e2022GL099572. https://doi.org/10.1029/2022GL099572
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Diego F. Osorio Giraldo, Luis Fernando Carvajal-Serna, Julián D. Rojo Hernández

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.