Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura

Emerging Trends and Challenges of Software Architectures in Quantum Computing: A Systematic Literature Review

Authors

Keywords:

SQA, Software Quantum Architecture, Quantum Software Engineering, Systematic Literature Review, SLR (en).

Keywords:

SQA, Arquitectura de Software Cuántica, Ingeniería de Software Cuántica, Revisión Sistemática de la Literatura, RSL. (es).

Abstract (es)

El auge de la computación cuántica ha abierto un nuevo paradigma en el procesamiento de la información, prometiendo superar los límites de la computación clásica. Sin embargo, el desarrollo de arquitecturas de software que puedan explotar plenamente este potencial es aún un campo de estudio constante, lleno de desafíos sin precedentes. Este artículo presenta los resultados reportados después de realizar una Revisión Sistemática de la Literatura sobre las arquitecturas de software desde el punto de vista del contexto de la computación cuántica, destacando las tendencias emergentes y delineando los principales desafíos que enfrenta este campo. Mediante un enfoque metodológico formal y riguroso, se identificó y analizó un total de 17 estudios considerados primarios, identificando patrones clave, metodologías de diseño y estrategias de implementación que están guiando la evolución de las arquitecturas de software cuánticas. Los resultados muestran una concentración de esfuerzos en la estandarización de protocolos, la seguridad cuántica y la escalabilidad, así como una creciente preocupación por la interoperabilidad con sistemas clásicos y la abstracción de la complejidad cuántica para los desarrolladores. Este estudio proporciona una consolidación crítica del conocimiento existente y establece una base para futuras investigaciones, señalando áreas emergentes y oportunidades para innovaciones disruptivas en el diseño y aplicación de software cuántico.

Abstract (en)

The rise of quantum computing has introduced a new paradigm in information processing, promising to surpass the limits of classical computing. However, the development of software architectures that can fully exploit this potential remains an ongoing field of study, filled with unprecedented challenges. This article presents the reported findings from a Systematic Literature Review on software architectures in the context of quantum computing, highlighting emerging trends and outlining the main challenges faced by this field. Through a formal and rigorous methodological approach, a total of 17 primary studies were identified and analyzed, revealing key patterns, design methodologies, and implementation strategies that are shaping the evolution of quantum software architectures. The results show a concentration of efforts on protocol standardization, quantum security, and scalability, along with growing concerns about interoperability with classical systems and the abstraction of quantum complexity for developers. This study not provides a critical consolidation of existing knowledge and lays the foundation for future research, identifying emerging areas and opportunities for disruptive innovations in the design and application of quantum software.

References

Ahmad, A., Khan, A. A., Waseem, M., Fahmideh, M., & Mikkonen, T. (2022). Towards process centered architecting for quantum software systems [Artículo de conferencia]. 2022 IEEE International Conference on Quantum Software (QSW). https://doi.org/10.1109/QSW55613.2022.00019

Akbar, M. A., Rafi, S., & Khan, A. A. (2022). Classical to quantum software migration journey begins: a conceptual readiness model [Artículo de conferencia]. International Conference on Product- Focused Software Process Improvement. https://doi.org/10.48550/arXiv.2209.05105

Azeem Akbar, M., Khan, A. A., Mahmood, S., & Rafi, S. (2022). Quantum software engineering: A new genre of computing. ArXiv E-Prints. https://doi.org/10.48550/arXiv.2211.13990

Basili, V., Rombach, D., Schneider, K., Kitchenham, B., Pfahl, D., & Selby, R. (2007). Empirical software engineering issues. Critical assessment and future directions: International workshop, Dagstuhl Castle, Germany, June 26-30, 2006, revised papers (vol. 4336). Springer. https://doi.org/10.1007/978-354071301-2

Bayerstadler, A., Becquin, G., Binder, J., Botter, T., Ehm, H., Ehmer, T., Erdmann, M., Gaus, N., Harbach, P., & Hess, M.(2021). Industry quantum computing applications. EPJ Quantum Technology, 8(1), 25. https://doi.org/10.1140/epjqt/s40507-021-00114-x

Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., & Marick, B. (2001). Manifesto for Agile Software Development. https://agilemanifesto.org/

Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. A. (2008). Using mapping studies in software engineering. Ppig, 8, 195–204. https://doi.org/10.14236/ewic/EASE2008.8

Bühler, F., Barzen, J., Beisel, M., Georg, D., Leymann, F., & Wild, K. (2023). Patterns for quantum software development [Artículo de conferencia]. 15th International Conference on Pervasive Patterns and Applications (PATTERNS 2023). https://doi.org/10.1145/3665870.3665871

Caldiera, V. R. B. G., & Rombach, H. D. (1994). The goal question metric approach. Encyclopedia of Software Engineering, 528-532. https://www.cs.umd.edu/users/mvz/handouts/gqm.pdf

Conradi, H., & Fuggetta, A. (2002). Improving software process improvement. IEEE Software, 19(4), 92–99. https://doi.org/10.1109/MS.2002.1020295

Cuomo, D., Caleffi, M., & Cacciapuoti, A. S. (2020). Towards a distributed quantum computing ecosystem. IET Quantum Communication, 1(1), 3-8. https://doi.org/10.1049/iet-qtc.2020.0002

Doran, G. T. (1981). There's a SMART way to write managements's goals and objectives. Management Review, 70, 35-36.

https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf

Dybå, T., & Dingsøyr, T. (2008). Strength of evidence in systematic reviews in software engineering [Artículo de conferencia]. Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement. https://doi.org/10.1145/1414004.1414034

Gibney, E. (2016). Inside Microsoft’s quest for a topological quantum computer. Nature. https://doi.org/10.1038/nature.2016.20774

Gibney, E. (2019). Hello quantum world! Google publishes landmark quantum supremacy claim. Nature, 574(7779), 461-463. https://doi.org/10.1038/d41586-019-03213-z

Grossi, M., Crippa, L., Aita, A., Bartoli, G., Sammarco, V., Picca, E., Said, N., Tramonto, F., & Mattei, F. (2021). A serverless cloud integration for quantum computing. arXiv preprint. https://doi.org/10.48550/arXiv.2107.02007

Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering (ver. 2.3) [Reporte técnico]. Ebse. https://doi.org/10.1145/1134285.1134500

Khan, A. A., Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Mikkonen, T., & Abrahamsson, P. (2023). Software architecture for quantum computing systems—A systematic review. Journal of Systems and Software, 201, 111682. https://doi.org/10.1016/j.jss.2023.111682.

Lee, R. (2013). Software engineering research, management and applications (vol. 496). Springer. https://doi.org/10.1007/978-3-030-24344-9.

Nallamothula, L. (2020). Selection of quantum computing architecture using a decision tree approach [Artículo de conferencia]. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). https://doi.org/10.1109/ICISS49785.2020.9315893.

Pérez-Castillo, R., & Piattini, M. (2022). Design of classical-quantum systems with UML. Computing, 104(11), 2375-2403. https://doi.org/10.1007/s00607-022-01091-4.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software engineering. 12th International Conference on Evaluation and Assessment in Software Engineering (EASE), 12, 1-10.

Piattini, M., & Murillo, J. M. (2022). Quantum software engineering landscape and challenges. En M. A. Serrano, R. Pérez-Castillo, & M. Piattini (Eds.), Quantum Software Engineering (pp. 25-38). Springer. https://doi.org/10.1007/978-3-031-05324-5_2

Piattini, M., Peterssen, G., & Pérez-Castillo, R. (2021). Quantum computing: A new software engineering golden age. ACM SIGSOFT Software Engineering Notes, 45(3), 12-14. https://doi.org/10.1145/3402127.3402131

Ramouthar, R., & Seker, H. (2023). Hybrid quantum algorithms and quantum software development frameworks. ScienceOpen preprints. https://doi.org/10.14293/PR2199.000298.v1

Santos, A. C. (2016). The IBM quantum computer and the IBM quantum experience. https://quantum.ibm.com

Scheerer, M., Klamroth, J., & Denninger, O. (2021). Engineering reliable hybrid quantum software: An architectural-driven approach. https://ceur-ws.org/Vol-3008/short3.pdf

Shamima Aktar, M., Liang, P., Waseem, M., Tahir, A., Ahmad, A., Zhang, B., & Li, Z. (2023). Architecture decisions in quantum software systems: An empirical study on Stack Exchange and GitHub, Information and Software Technology, 177, 107587. https://doi.org/10.1016/j.infsof.2024.107587

Shull, F., Singer, J., & Sjøberg, D. I. K. (2007). Guide to advanced empirical software engineering. Springer. https://doi.org/10.1007/978-1-84800-044-5

Sodhi, B. (2018). Quality attributes on quantum computing platforms. arXiv preprints. https://doi.org/10.48550/arXiv.1803.07407

Sodhi, B., & Kapur, R. (2021). Quantum computing platforms: assessing the impact on quality attributes and sdlc activities [Artículo de conferencia]. 2021 IEEE 18th International Conference on Software Architecture (ICSA). https://doi.org/10.1109/ICSA51549.2021.00016

Steane, A. (1998) Quantum computing. Reports on Progress in Physics, 61, 117-173. http://dx.doi.org/10.1088/0034-4885/61/2/002

Stirbu, V., & Mikkonen, T. (2023). Software architecture challenges in integrating hybrid classical-quantum systems. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), 2, 203-204. https://doi.org/10.1109/QCE57702.2023.10212

Tardy, C. (2004). The role of English in scientific communication: Lingua franca or Tyrannosaurus rex? Journal of English for Academic Purposes, 3(3), 247-269. https://doi.org/10.1016/j.jeap.2003.10.001

Weder, B., Barzen, J., Leymann, F., Salm, M., & Vietz, D. (2020a). The quantum software lifecycle [Artículo de conferencia]. 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software. https://doi.org/10.1145/3412451.3428497

Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2006). Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Engineering, 11, 102-107. https://doi.org/10.1007/s00766-005-0021

Yang, H., Wang, J., & Sun, X. (2023). Research on quantum computing standard system architecture and roadmap. Journal of Physics: Conference Series, 2433(1), 012035. https://doi.org/10.1088/1742-6596/2433/1/012035

Yang, L., Zhang, H., Shen, H., Huang, X., Zhou, X., Rong, G., & Shao, D. (2021). Quality assessment in systematic literature reviews: A software engineering perspective. Information and Software Technology, 130, 106397. https://doi.org/10.1016/j.infsof.2020.106397

Ying, M. (2010). Foundations of quantum programming [Artículo de conferencia]. Asian Symposium on Programming Languages and Systems. https://doi.org/10.1007/978-3-642-17164-2_2

Yue, T., Mauerer, W., Ali, S., Taibi, D., Greiwe, F., Krüger, T., Mauerer, W., Safi, H., Wintersperger, K., & Mauerer, W.(2023). Challenges and opportunities in quantum software architecture. En P. Pelliccione, R. Kazman, I. Weber & A. Liu (Eds.), Software Architecture (pp. 1-23). Springer. https://doi.org/10.1007/978-3-031-36847-9_1

Zhao, J. (2020). Quantum software engineering: Landscapes and horizons. arXiv preprint. https://doi.org/10.48550/arXiv.2007.07047

How to Cite

APA

Orozco, C. E., and Pardo Calvache, C. J. (2024). Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura. Revista Científica, 51(3), 87–111. https://doi.org/10.14483/23448350.22793

ACM

[1]
Orozco, C.E. and Pardo Calvache, C.J. 2024. Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura. Revista Científica. 51, 3 (Dec. 2024), 87–111. DOI:https://doi.org/10.14483/23448350.22793.

ACS

(1)
Orozco, C. E.; Pardo Calvache, C. J. Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura. Rev. Cient. 2024, 51, 87-111.

ABNT

OROZCO, Carlos Eduardo; PARDO CALVACHE, César Jesús. Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura. Revista Científica, [S. l.], v. 51, n. 3, p. 87–111, 2024. DOI: 10.14483/23448350.22793. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22793. Acesso em: 19 may. 2025.

Chicago

Orozco, Carlos Eduardo, and César Jesús Pardo Calvache. 2024. “Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura”. Revista Científica 51 (3):87-111. https://doi.org/10.14483/23448350.22793.

Harvard

Orozco, C. E. and Pardo Calvache, C. J. (2024) “Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura”, Revista Científica, 51(3), pp. 87–111. doi: 10.14483/23448350.22793.

IEEE

[1]
C. E. Orozco and C. J. Pardo Calvache, “Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura”, Rev. Cient., vol. 51, no. 3, pp. 87–111, Dec. 2024.

MLA

Orozco, Carlos Eduardo, and César Jesús Pardo Calvache. “Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura”. Revista Científica, vol. 51, no. 3, Dec. 2024, pp. 87-111, doi:10.14483/23448350.22793.

Turabian

Orozco, Carlos Eduardo, and César Jesús Pardo Calvache. “Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura”. Revista Científica 51, no. 3 (December 14, 2024): 87–111. Accessed May 19, 2025. https://revistas.udistrital.edu.co/index.php/revcie/article/view/22793.

Vancouver

1.
Orozco CE, Pardo Calvache CJ. Tendencias emergentes y desafíos de las arquitecturas de software en la computación cuántica. Una revisión sistemática de la literatura. Rev. Cient. [Internet]. 2024 Dec. 14 [cited 2025 May 19];51(3):87-111. Available from: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22793

Download Citation

Visitas

0

Dimensions


PlumX


Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
No
11%
Metric
This journal
Other journals
Articles accepted 
37%
33%
Days to publication 
62
145

Indexed in

Editor & editorial board
profiles
Loading...