Estado del arte en detección de fugas y propuesta de máquina de soporte vectorial para el análisis de estanqueidad en envases

  • Luis Francisco Niño Sierra Universidad Distrital Francisco José de Caldas
  • Darío Amaya Hurtado Universidad Militar Nueva Granada
  • Mauricio Mauledoux Monroy Universidad Militar Nueva Granada
Palabras clave: análisis de estanqueidad, detección de fugas, máquina de soporte vectorial. (es_ES)

Resumen (es_ES)

El presente artículo es una recopilación de los métodos más utilizados en análisis de estanqueidad o detección de fugas, como antecedentes de la realización de un sistema que aplica la inteligencia artificial para este tipo de análisis. Se presenta también la propuesta de usar una máquina de soporte vectorial en este sistema.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Luis Francisco Niño Sierra, Universidad Distrital Francisco José de Caldas

Docente de la Universidad Distrital Francisco José de Caldas, Bogotá - Colombia. Contacto:

Darío Amaya Hurtado, Universidad Militar Nueva Granada
Docente de la Universidad Militar Nueva Granada, Bogotá - Colombia. Contacto:
Mauricio Mauledoux Monroy, Universidad Militar Nueva Granada

Docente de la Universidad Militar Nueva Granada, Bogotá - Colombia. Contacto:


Allister, E. W. (1988). Pipeline rules of thump handbook: A manual for quick, accurate solutions to everyday pipeline problems. 2nd ed. Houston: Gulf Publishing House.

Avelino, Á. M., et al. (2009). Real time leak detection system applied to oil pipelines using sonic technology and neural networks. IEEE.

Batzias, F., Siontorou, C., & Spanidis, P.-M. (2011). Designing a reliable leak bio-detection system for natural gas pipelines. Journal of Hazardous Materials, 186(1), 35-58.

Beck, S. M. B., Curren, M. D., Sims, N. D., & Stanway, R. (2005). Pipeline network features and leak detection by cross-correlation analysis of reflected waves. Journal of Hydraulic Engineering, ASCE 131(8), 715-723.

Bhattacharyya, G. K. & Johnson, R. A. (1977).

Statistical concepts and methods. John Wiley


Billmann, L. & Isermann, R. (1987). Leak detec-

tion methods for pipelines. Automatica, 23(3),


Bimpas, M., Amditis, A., & Uzunoglu, N. (2010). Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45 GHz. Journal of Applied Geophysics 70, 226-236.

Bonfiglioli Engineering S.p.A. Recuperado de

Burges Christopher, J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121- 167.

Chen, H., Shi, X., Zhang, Y., et al. (2003). The advancement of pipelines leak detection technology. Security and Environment Engineering, 10(3), 58-61.

Colombo, A. F., Lee, P., & Karney, B. W. (2009). A

selective literature review of transient-based

leak detection methods. Journal of Hydro-en-

vironment Research, 2, 212-227.

Covas, D. & Ramos, H. (1999). Leakage detection in single pipelines using pressure wave behaviour. In: Fifth International Conference on Computing and Control in the Water Industry (CCWI), Exeter, England, September 1999. Proceedings of CCWI’99, Exeter, UK, 287-299.

Covas, D., Ramos, H., Lopes, N., Almeida, A. B. (2006). Water pipe system diagnosis by transient pressure signals. In: Eighth Annual Water Distribution Systems Analysis Symposium, Cincinnati, OH, August 27-30.

Da Silva, H. V., Morooka, C. K., Guilherme, I. R.,

da Fonseca, T., & Mendes, J. R. P. (2005). Leak

detection in petroleum pipelines using a fuzzy system. Journal of Petroleum Science and Engineering, 49, 223-238.

El-Shiekh, T. (2010). Leak detection methods in transmission pipelines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(8), 715-726.

Fengyan, Q., Changchun, B., & Yan, L. (2004). A novel two-step SVM classifier for voiced/unvoiced/silence classification of speech. ISCSLP 2004, 77-80.

Fernández-Getino García, M. J. & Rojo Álvarez, J. L. (2006). Support Vector Machines for robustchannel estimation in OFDM. IEEE Signal Processing Letters, 13(7), 397-400.

Ferrante, M. & Brunone, B. (2004). Pressure waves as a tool for leak detection in closed conduits. Urban Water Journal 1(2), 145-156.

Fujimoto, Y. & Lokibe, T. (1999). Measurement of Determinism in Time Series by Chaotic Approach and its Applications. International Journal of Advanced Computational Intelligence, 3(1), 50-55.

Golby, J. & Woodward, T. (1999). Find that leak. IEE Review, 45, 219-221.

Goswami, A. & Han, B. (2008). On ultra-fine leak

detection of hermetic wafer level packages.


Guo, X.-l., et al. (2012). Analysis of first transient pressure oscillation for leak detection in a single pipeline. Journal of Hydrodynamics, 24(3), 363-370.

Haykin, S. (1998). Neural networks: A comprehensive foundation. Prentice Hall. Recuperado de

Hunaidi, O., Wang, A., Bracken, M., Gambino, T.,& Fricke, C. (2004). Acoustic methods for locating leaks in municipal water pipe networks. International Conference on Water Demand Management, Dead Sea, Jordan, May 30-June 3, pp. 1-14.

Jönsson, L. (2001). Experimental studies of leak detection using hydraulic transients. In: 29th IAHR Congress Proceedings, IAHR, Sept. 16-21, Beijing, China.

Jourdain, A., et al. (2002). Investigation of the hermeticity of BCB-sealed cavities for housing (RF-) MEMS devices, in Proc. 15th IEEE Int. Conf. Micro Electro Mechanical Systems, Las Vegas, NV, Jan., pp. 677-680.

Kim, M. & Lee, S. (2009). Detection of leak acoustic signal in buried gas pipe based on the time frequency analysis. Journal of Loss Prevention in the Process Industries, 22, 990-994.

Kingsley, E., Abhulimen, A., & Susu, A. (2004).

Liquid pipeline leak detection system: Model development and numerical simulation. Chemical Engineering Journal 97, 47-67.

Lawrence, L. L. (1990). Probability and statistics for modern engineering, 2nd ed. New York: McGraw-Hill.

Lin, K.-P. & Chen, M.-S. (2011). On the design and analysis of the privacy-preserving SVM classifier. IEEE Transaction on Knowledge and Data Engineering, 23(11).

Lin, K.-P. & Chen, M.-S. (2008). Releasing the SVM classifier with privacy preservation. 2008 Eighth IEEE International Conference on Data Mining.

Liu, M., Zang, S., & Zhou, D. (2005). Fast leak detection and location of gas pipelines based on an adaptive particle filter. International Journal of Applied Mathematics and Computer Science, 541-550.

Luyong, S., et al. (2010). Research of leak detection and exclusion system based on pressure differential discrimination method. IEEE.

Ming, W. & Wei-qiang, W. (2006). Application of Wavelet to Detect Pipeline Leak Point. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA’06).

Murvay, P.-S. & Silea, I. (2012). A survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries 25, 966-973.

Musbah, M. S. & Zhu, X. (2007). Support vector

machines for DS-UWB channel equalisation. Department of Electrical Engineering & Electronics, University of Liverpool, UK, IEEE, pp. 524-527.

Rongsheng, G., Gongtian, S., & Shifeng, L. (2 002).An overview on the development of acoustic emission signal processing and analysis technique. Nondestructive Testing, 24(1), 23-28.

Sami, L. H.-T. & Ezzeddine, H.-T. (2010). Leak

detection of hydrogen-natural gas mixtures in pipes using the characteristics method of specified time intervals. Journal of Loss Prevention in the Process Industries 23, 637-645. turbulence. In: D. Rand & L. S. Young (eds.), Dynamical systems and turbulence. LectureNotes Math., 898. Berlin: Springer-Verlag, pp. 366-382.

Tani Tetsuji, et al. (2006). Chaos information criteria to detect high-pressure gas leak in petroleum refining plant. SICEICASE International Joint Conference 2006, Oct. 18-21, in Bexco, Busan, Korea.

Tani, T., Nagasako, T., & Lokibe, T. (2004). High

pressure gas leak detection by a chaotic approach in a petroleum refining plant. Smart engineering system design. Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life, 14, ASME, 889-904

Tao, Y. & Malshe, A. (2005). Theoretical investigation on hermeticity testing of MEMS packages based on MIL-STD-883E. Microelectron. Rel., 45(3-4), 559-566.

Tongtai Xu. (1997). Lost circulation prevention and plugging technology in drilling [M]. Beijing: Petroleum Industry, pp. 35-50.

Vaz Junior, C. A., et al. (2010). ARX modeling approach to leak detection and diagnosis. Journal of Loss Prevention in the Process Industries 23, 462-475.

Wang Xin, Liu Jianguo, Ma Weidong, et al. (2002). The progress of pipeline leak testing technology at home and abroad. Chemical Equipment & Anticorrosion, 5, 40-44.

Yang Jiao, Yang Qingxin, Li Guanghai, & Zhang Jingyan. (2006). Acoustic emission source identification technique for buried gas pipeline leak. IEEE.

Yang Jin, Wen Yumei, & Li Ping. (2010). Approximate entropy-based leak detection using artificial neural network in water distribution pipelines. 2010 11th Int. Conf. Control,Automation, Robotics and Vision Singapore, 7-10th December.

Yunhu Lu, Mian Chen, Yan Jin, & Hui Hui. (2011). Identification of leak zone pre-drilling based on fuzzy control. IEEE.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Zhang, L., Qin, X., Wang, Z., & Liang, W. (2009).Designing a reliable leak detection system for West products pipeline. Journal of Loss Prevention in the Process Industries, 22, 981-989.

Zhi-Jie Zhou, et al. (2011). Bayesian reasoning approach based recursive algorithm for online updating belief rule based expert system of pipeline leak detection. Expert Systems with Applications 38, 3937-3943.

Zhiyin Gan, et al. (2008). Measurement of leak rate for MEMS vacuum packaging. IEEE.

Cómo citar
Niño Sierra, L. F., Amaya Hurtado, D., & Mauledoux Monroy, M. (2013). Estado del arte en detección de fugas y propuesta de máquina de soporte vectorial para el análisis de estanqueidad en envases. Revista Científica, 1(17), 104 - 112.
Publicado: 2013-06-15
Ciencia e ingeniería

Artículos más leídos del mismo autor/a