DOI:

https://doi.org/10.14483/23448393.18145

Published:

2022-11-20

Issue:

Vol. 28 No. 1 (2023): January-April

Section:

Systems Engineering

Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection

Herramienta software para la calibración extrínseca de cámaras infrarrojas y RGBD aplicada a inspección termográfica

Authors

  • Jaimen Junior Aza Taimal Universidad del Valle
  • Bladimir Bacca Cortes Universidad del Valle
  • Andrés David Restrepo Girón Universidad del Valle https://orcid.org/0000-0001-7891-1064

Keywords:

thermographic inspection, extrinsic calibration, image fusion, thermal image, RGBD (en).

Keywords:

Inspección termográfica, calibración extrínseca, fusión de imágenes, imagen térmica, RGBD (es).

Author Biographies

Jaimen Junior Aza Taimal, Universidad del Valle

He got the Electronic Engineer degree on 2021, at the Universidad del Valle, Cali, Colombia. Nowadays, he works in software development focused on computer vision. He is interested in computer vision, frontend and backend development, and embedded systems.

Andrés David Restrepo Girón, Universidad del Valle

Doctor in Engineering of the Universidad del Valle (2014); Magister in Automation of the Universidad del Valle (2005); and Electronic Engineer of the same University (1999); nowadays, Andrés Restrepo Girón is Associate Professor at Universidad del Valle. He belongs to the Perception and Intelligent Systems research group, of the Universidad del Valle. His research interests include Electronic design, electronic instrumentation, digital signal processing and thermography

References

S. Zhao, Z. Fang, and S. Wen, “A real-time handheld 3D temperature field reconstruction system,” in 2017 IEEE 7th Annual Int. Conf. CYBER Tech. Auto. Cont. Int. Syst., 2017, pp. 289-294. https://doi.org/10.1109/CYBER.2017.8446193 DOI: https://doi.org/10.1109/CYBER.2017.8446193

X. Li, M. Ding, D. Wei, X. Wu, and Y. Cao, “Estimate depth information from monocular infrared images based on deep learning,” in 2020 IEEE Int. Conf. Prog. Info. Comp. (PIC), 2020, pp. 149-153. https://doi.org/10.1109/PIC50277.2020.9350792 DOI: https://doi.org/10.1109/PIC50277.2020.9350792

Z. Zhang, “A flexible new technique for camera calibration,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 22, no. 11, pp. 1330-1334, 2000. https://doi.org/10.1109/34.888718 DOI: https://doi.org/10.1109/34.888718

J.-Y. Bouguet, “Camera calibration toolbox for Matlab,” California Institute of Technology, 2013. [Online]. Available: http://www.vision.caltech.edu/bouguetj/calib_doc/

J. T. Lussier and S. Thrun, “Automatic calibration of RGBD and thermal cameras,” in 2014 IEEE/RSJ Int. Conf. Intell. Rob. Syst-, 2014, pp. 451-458. https://doi.org/10.1109/IROS.2014.6942598 DOI: https://doi.org/10.1109/IROS.2014.6942598

S. Sels et al., “A CAD matching method for 3D thermography of complex objects,” Infrared Phys. Technol., vol. 99, pp. 152-157, Jun. 2019. https://doi.org/10.1016/j.infrared.2019.04.014 DOI: https://doi.org/10.1016/j.infrared.2019.04.014

P. Aksenov et al., “3D thermography for quantification of heat generation resulting from inflammation,” 2003. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.4874&rep=rep1&type=pdf

T. P. Truong, M. Yamaguchi, S. Mori, V. Nozick, and H. Saito, “Registration of RGB and thermal point clouds generated by structure from motion,” in 2017 IEEE Int. Conf. Comp. Vision Workshops (ICCVW), 2017, pp. 419-427. https://doi.org/10.1109/ICCVW.2017.57 DOI: https://doi.org/10.1109/ICCVW.2017.57

A. Chromy and O. Klima, “A 3D scan model and thermal image data fusion algorithms for 3D thermography in medicine,” J. Healthc. Eng., vol. 2017, pp. 1-9, 2017. https://doi.org/10.1155/2017/5134021 DOI: https://doi.org/10.1155/2017/5134021

D. Borrmann et al., “The project ThermalMapper – Thermal 3D mapping of indoor environments for saving energy,” IFAC Proc., vol. 45, no. 22, pp. 31-38, Jan. 2012. https://doi.org/10.3182/20120905-3-HR-2030.00045 DOI: https://doi.org/10.3182/20120905-3-HR-2030.00045

C. Wang, “Point clouds and thermal data fusion for automated gbXML-based building geometry model generation,” PhD dissertation, Sch. Civil Environ. ENg., Georgia I. Tech., Atlanta, GA, USA, 2014. [Online]. Available: http://hdl.handle.net/1853/54008

S. Vidas, P. Moghadam, and M. Bosse, “3D thermal mapping of building interiors using an RGB-D and thermal camera,” 2013 IEEE Int. Conf. Robot. Autom., pp. 2311-2318, May 2013. https://doi.org/10.1109/ICRA.2013.6630890 DOI: https://doi.org/10.1109/ICRA.2013.6630890

C. Yanpeng et al., “Depth and thermal sensor fusion to enhance 3D thermographic reconstruction,” Opt. Express, vol. 26, no. 7, pp. 8179-8193, 2018. https://doi.org/10.1364/OE.26.008179 DOI: https://doi.org/10.1364/OE.26.008179

P. Moghadam and S. Vidas, “HeatWave: the next generation of thermography devices,” in Proc. SPIE 9105, Thermosense: Thermal Infrared Applications XXXVI, 2014, p. 8. https://doi.org/10.1117/12.2053950 DOI: https://doi.org/10.1117/12.2053950

S. Karolj, L. TOMISLAV, S. Ivan, L. Jgenero, and G. Ivan, “4D thermal imaging system for medical applications,” Period. Biol., vol. 113, no. 4, pp. 407-416, 2011.

J. Rangel, M. Soldan, and A. Kroll, “3D thermal imaging: Fusion of thermography and depth cameras,” in 12th Int. Conf. Quant. Infrared Thermog., 2015, pp. 1-10. https://doi.org/10.21611/qirt.2014.035 DOI: https://doi.org/10.21611/qirt.2014.035

S. Vidas, P. Moghadam, and S. Sridharan, “Real-time mobile 3D temperature mapping,” IEEE Sens. J., vol. 15, no. 2, pp. 1145-1152, Feb. 2015. https://doi.org/10.1109/JSEN.2014.2360709 DOI: https://doi.org/10.1109/JSEN.2014.2360709

G. Chernov, V. Chernov, and M. Barboza Flores, “3D dynamic thermography system for biomedical applications,” in Application of Infrared to Biomedical Sciences, E. Ng and M. Etehadtavakol, eds., Singapore: Springer, 2017, pp. 517-545. https://doi.org/10.1007/978-981-10-3147-2_28 DOI: https://doi.org/10.1007/978-981-10-3147-2_28

Y. Shi, P. Payeur, M. Frize, and E. Bariciak, “Thermal and RGB-D imaging for necrotizing enterocolitis detection,” in 2020 IEEE Int. Symp. Medical Meas. App. (MeMeA), 2020, pp. 1-6. https://doi.org/10.1109/MeMeA49120.2020.9137344 DOI: https://doi.org/10.1109/MeMeA49120.2020.9137344

T. Zhang, L. Hu, L. Li, and D. Navarro-Alarcón, “Towards a multispectral RGB-IR-UV-D vision system – Seeing the invisible in 3D,” presented at 2021 IEEE Int. Conf. Robotics Biomimetics (ROBIO), Sanya, China, December 27-31, 2021. https://doi.org/10.1109/ROBIO54168.2021.9739218 DOI: https://doi.org/10.1109/ROBIO54168.2021.9739218

S. Schramm, P. Osterhold, R. Schmoll, and A. Kroll, “Combining modern 3D reconstruction and thermal imaging: generation of large-scale 3D thermograms in real-time,” Quant. Infrared Thermogr. J., pp. 1-17, Oct. 2021. https://doi.org/10.1080/17686733.2021.1991746 DOI: https://doi.org/10.1080/17686733.2021.1991746

J. D. Choi and M. Y. Kim, “A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep learning based object detection,” ICT Express, 2022. [Online]. Available: https://doi.org/10.1016/j.icte.2021.12.016 DOI: https://doi.org/10.1016/j.icte.2021.12.016

R. E. Ospina, S. D. Cardona, and B. Bacca-Cortés, “Software tool for thermographic inspection using multimodal fusing of thermal and visible images,” Ing. y Compet., vol. 19, no. 1, pp. 50-65, 2017. https://doi.org/10.25100/iyc.v19i1.2130 DOI: https://doi.org/10.25100/iyc.v19i1.2130

OpenCV, “OpenCV,” OpenCV Python, 2021. [Online]. Available: https://pypi.org/project/opencv-python/4.1.2.30/

C.-T. Hsieh, “An efficient development of 3D surface registration by Point Cloud Library (PCL),” in 2012 Int. Symp. Intel. Signal Proc. Comm. Syst., 2012, pp. 729-734. https://doi.org/10.1109/ISPACS.2012.6473587 DOI: https://doi.org/10.1109/ISPACS.2012.6473587

Kitware, “VTK – The Visualization Toolkit,” 2021. [Online]. Available: https://vtk.org/

P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed., Boston, MA, USA: Addison-Wesley Professional, 2003.

A. Zisserman and R. Hartley, Multiple view geometry in computer vision, 2nd ed., Cambridge, UK: Cambridge University Press, 2004.

Cloudcompare.org, “CloudCompare,” 2021. [Online]. Available: https://www.danielgm.net/cc/

W. Nakagawa et al., “Visualization of temperature change using RGB-D camera and thermal camera,” L. Agapito, M. Bronstein, C. Rother, eds., Cham, Germany: Springer, 2015, pp. 386-400. https://doi.org/10.1007/978-3-319-16178-5_27 DOI: https://doi.org/10.1007/978-3-319-16178-5_27

How to Cite

APA

Aza Taimal, J. J. ., Bacca Cortes, B., and Restrepo Girón, A. D. (2022). Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection. Ingeniería, 28(1), e18145. https://doi.org/10.14483/23448393.18145

ACM

[1]
Aza Taimal, J.J. et al. 2022. Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection. Ingeniería. 28, 1 (Nov. 2022), e18145. DOI:https://doi.org/10.14483/23448393.18145.

ACS

(1)
Aza Taimal, J. J. .; Bacca Cortes, B.; Restrepo Girón, A. D. Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection. Ing. 2022, 28, e18145.

ABNT

AZA TAIMAL, Jaimen Junior; BACCA CORTES, Bladimir; RESTREPO GIRÓN, Andrés David. Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection. Ingeniería, [S. l.], v. 28, n. 1, p. e18145, 2022. DOI: 10.14483/23448393.18145. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/18145. Acesso em: 30 dec. 2025.

Chicago

Aza Taimal, Jaimen Junior, Bladimir Bacca Cortes, and Andrés David Restrepo Girón. 2022. “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection”. Ingeniería 28 (1):e18145. https://doi.org/10.14483/23448393.18145.

Harvard

Aza Taimal, J. J. ., Bacca Cortes, B. and Restrepo Girón, A. D. (2022) “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection”, Ingeniería, 28(1), p. e18145. doi: 10.14483/23448393.18145.

IEEE

[1]
J. J. . Aza Taimal, B. Bacca Cortes, and A. D. Restrepo Girón, “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection”, Ing., vol. 28, no. 1, p. e18145, Nov. 2022.

MLA

Aza Taimal, Jaimen Junior, et al. “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection”. Ingeniería, vol. 28, no. 1, Nov. 2022, p. e18145, doi:10.14483/23448393.18145.

Turabian

Aza Taimal, Jaimen Junior, Bladimir Bacca Cortes, and Andrés David Restrepo Girón. “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection”. Ingeniería 28, no. 1 (November 20, 2022): e18145. Accessed December 30, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/18145.

Vancouver

1.
Aza Taimal JJ, Bacca Cortes B, Restrepo Girón AD. Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection. Ing. [Internet]. 2022 Nov. 20 [cited 2025 Dec. 30];28(1):e18145. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/18145

Download Citation

Visitas

1169

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
521
145

Indexed in

Editor & editorial board
profiles
Loading...