Algorithm through Pattern Recognition for automatic quantification of Toxoplasma gondii tachyzoites

Algoritmo de reconocimiento de patrones para cuantificaci´on autom´atica de taquizoitos de Toxoplasma gondii

Palabras clave: Toxoplasma gondii, tachyzoites, digital image processing, automatic quantification (en_US)
Palabras clave: Toxoplasma gondii, tachyzoites, digital image processing, automatic quantification (es_ES)

Resumen (en_US)

Context: Digital image processing is shown as an efficient and suitable computational tool for the
automatic quantification of human pathogens in images, providing analysis in less time, greater number
of samples and reproducibility in the results. We propose the development and validation of an image
processing algorithm, specific for the recognition and automatic quantification of tachyzoites of T.
gondii.
Method: We developed an algorithm based on image processing. This workflow allows to identify the
morphology of each parasite in the image determining the number of parasites present and differentiating
it with morphology similar but not corresponding to the real of the parasite. Images was obtained
through staining protocols with Giemsa.
Results: The original images were analyzed by experts showing results correlated with those obtained
by the automatic count. In addition, an processing time of 5 seconds per image was obtained with the
algorithm. This automated quantification tool allowed count of tachyzoites in hundred of images.
Conclusions: This automatic image analysis tool can extend its implementation to any laboratory that
is involved in the quantification of extracellular Toxoplasma gondii tachyzoites, as well as other aspects
of research on T. gondii tachyzoites that require the count of this form of development of the parasite.

Resumen (es_ES)

Contexto: El procesamiento digital de im´agenes se muestra como una herramienta computacional
eficiente y adecuada para la cuantificaci´on autom´atica de pat´ogenos humanos en im´agenes, proporcionando
an´alisis en menos tiempo, mayor n´umero de muestras y reproducibilidad en los resultados.
Nosotros proponemos el desarrollo y validaci´on de un algoritmo de procesamiento de im´agenes, espec
´ıfico para el reconocimiento y cuantificaci´on autom´atica de taquizoitos de T. gondii.
M´etodo: Nosotros desarrollamos un algoritmo basado en el procesamiento de im´agenes. Este flujo
de trabajo permite identificar la morfolog´ıa de cada par´asito en la imagen determinando el n´umero
de par´asitos presentes y diferenciando aquellas estructuras que presentan morfolog´ıa similar a la del
par´asito pero que no corresponden al mismo. Las im´agenes originales fueron obtenidas mediante protocolos
de tinci´on con Giemsa.
Resultados: Las im´agenes originales fueron analizadas por expertos mostrando resultados correlacionados
con los obtenidos por el conteo autom´atico. Adem´as, se obtuvo un tiempo de procesamiento
de 5 segundos por imagen con el algoritmo. Esta herramienta de cuantificaci´on autom´atica permiti´o el
recuento de taquizoitos en cientos de im´agenes.
Conclusiones: Esta herramienta de an´alisis autom´atico de im´agenes puede extender su implementaci´on
a cualquier laboratorio que est´e involucrado en la cuantificaci´on de taquizoitos extracelulares de Toxoplasma
gondii, as´ı como otros aspectos de la investigaci´on sobre taquizoitos de T. gondii que requieran
el conteo de este estado de desarrollo del par´asito.

Descargas

La descarga de datos todavía no está disponible.

Referencias

E. Yazdanparast, A. Dos Anjos, D. Garcia, C. Loeuillet, H. R. Shahbazkia, and B. Vergnes. Inspect, an opensource and versatile software for automated quantification of (leishmania) intracellular parasites. PLoS Negl Trop Dis, 8(5), 2014.

F. Pinto-Ferreira, E. T. Caldart, A. K. S. Pasquali, R. Mitsuka-Bregano, R. L. Freire, and I. T. Navarro. Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg Infect Dis, 25(12):2177 – 2182, 2019.

D. Schluter and A. Barragan. Advances and challenges in understanding cerebral toxoplasmosis. Front Immunol, 10(242), 2019.

W.A. Cañon-Franco, N. L ópez-Orozco, J.E. Gómez-Mar ín, and J. P. Dubey. An overview of seventy years of research (1944 – 2014) on toxoplasmosis in colombia, south america. Parasit Vectors, 7(427):1 – 15, 2014.

Z. Koloren and J. P. Dubey. A review of toxoplasmosis in humans and animals in turkey. Parasitology, 1(17):19 – 30, 2019.

K. Simekova, E. Novakova, R. Rosolanka, J. Masna, and D. Antolova. Clinical course of opportunistic infections-toxoplasmosis and cytomegalovirus infection in hiv-infected patients in slovakia. Pathogens, 8(4), 2019.

M.A. Lari, H. Farashbandi, and F. Mohammadi. Association of toxoplasma gondii infection with schizophrenia and its relationship with suicide attempts in these patients. Trop Med Int Health, 22(10):1322 – 1327, 2017.

A. A. Marchioro, B. T. Tiyo, C. M. Colli, C. Z. de Souza, J. L. Garcia, M. L. Gomes, and A. L. FalavignaGuilherme. First detection of toxoplasma gondii dna in the fresh leafs of vegetables in south america. Vector Borne Zoonotic Dis, 16(9):624 – 626, 2016.

A. Vismarra, E. Barilli, M. Miceli, C. Mangia, C. Bacci, F. Brindani, and L. Kramer. Toxoplasma gondii and pretreatment protocols for polymerase chain reaction analysis of milk samples: A field trial in sheep from southern italy. Ital J Food Saf, 6(1):299 – 303, 2017.

X. Y. Liu, Z. D. Wang, S. El-Ashram, and Q. Liu. Toxoplasma gondii oocyst-driven infection in pigs, chickens and humans in northeastern china. BMC Vet Res, 15(1), 2019.

J. F. Trivino-Valencia, J. D. Zuluaga, and J. E. Gomez-Marin. Detection by pcr of pathogenic protozoa in raw and drinkable water samples in colombia. Parasitol Res, 115(5):1789 – 1797, 2016.

D. M. Campo-Portacio, M. A. Discuviche-Rebolledo, P. J. Blanco-Tuirán, Y. M. Montero-Pérez, K. E. Orozco-Méndez, and Y. M. Assia-Mercado. Detección de toxoplasma gondii por amplificación del gen b1 en carnes de ´ consumo humano. Infectio, 18(3):93 – 99., 2014.

P. J. Lescault, B. Thompson, V. Patil, D. Lirussi, A. Burton, J. Margarit, J. Bond, and M. Matrajt. Genomic data reveal toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state. PLoS ONE, 5(12), 2010.

I. J. Blader, B. I. Coleman, C. T. Chen, and M. J. Gubbels. Lytic cycle of toxoplasma gondii: 15 years later. Annu Rev Microbiol, 69(1):463 – 485, 2015.

M. J. Holmes, P. Shah, R. C. Wek, and W. J. Sullivan. Simultaneous ribosome profiling of human host cells infected with toxoplasma gondii. MSphere, 4(3):19 – 30, 2019.

R. Useo, F. Husson, J. De Coninck, S. Khaldi, and P. Gervais. A new alternative in vitro method for quantification of toxoplasma gondii infectivity. J Parasitol, 98(2):299 – 303, 2012.

D. Cadena-Herrera, J. E. Esparza-De Lara, N. D. Ramirez-Ibanez, C.A. Lopez-Morales, N. O. Perez, L. F. FloresOrtiz, and E. Medina-Rivero. Validation of three viable-cell counting methods: Manual, semi-automated, and automated. Biotechnol Rep (Amst), 7(1):9 – 16, 2015.

Development of an automated image analysis protocol for quantification of intracellular forms of leishmania spp. PLoS One, 13(8):19 – 30, 2018.

M. J. Dagley, E. C. Saunders, K. J. Simpson, and M. J. McConville. High-content assay for measuring intracellular growth of leishmania in human macrophages. Assay Drug Dev Technol, 13(7):389 – 401, 2015

J.J. Barcia. The giemsa stain: Its history and applications. International Journal of Surgical Pathology, 2007. [21] D. J. P. Ferguson and J. F. Dubremetz. The ultrastructure of toxoplasma gondii. in toxoplasma gondii: The model apicomplexan - perspectives and methods: Second edition. Elsevier ltd, 13(7):19 – 59, 2013.

Cómo citar
Juez Castillo, G., Valencia Vidal, B. A., Murcia Zapata, K. N., & Romero Cerón, M. P. (2020). Algoritmo de reconocimiento de patrones para cuantificaci´on autom´atica de taquizoitos de Toxoplasma gondii. Ingeniería, 26(1). https://doi.org/10.14483/23448393.16102
Publicado: 2020-12-19
Sección
Ingeniería Química y de Petróleos