DOI:

https://doi.org/10.14483/23448393.20094

Published:

2023-05-31

Issue:

Vol. 28 No. 2 (2023): May-August

Section:

Electrical, Electronic and Telecommunications Engineering

Defending State-Feedback Based Controllers Against Sensor Attacks

Defensa de Controladores Basados en Realimentación de Estados Contra Ataques en Sensores

Authors

  • Luis Francisco Cómbita Universidad Distrital Francisco José de Caldas
  • Nicanor Quijano Universidad de los Andes,Universidad de Los Andes image/svg+xml
  • Alvaro Cárdenas Universidad de California https://orcid.org/0000-0002-5142-9750

Keywords:

Cyber-physical systems, unknown input observer, sensor attack, false data injection. (en).

Keywords:

Sistemas Ciber-Físicos, Observador de Entrada Desconocida, Ataques en sensores, Inyección de Datos Falsos. (es).

Downloads

Abstract (en)

Context: This paper is motivated by the need to improve the resilience of industrial control systems. Many control systems currently operating in the industry were designed and implemented before the boom in communications (wired and wireless networks) within industrial control systems. However, nowadays they operate connected to the communications network. This increase in connectivity has made the systems susceptible to cyber-attacks that seek to degrade the proper operation of the control loop even affecting only one sensor.

Method: We use concepts from fault tolerant control and classic control theory to show that it is possible to reconstruct the system state without (any) one of the system outputs. This fact is used in the recalculation of the control signal through an algorithm of attack detection and isolation, to avoid for an attack to be feedback to the system, mitigating its effect. We show the effectiveness of our proposal with simulations on a four-tanks testbed using Matlab and Simulink.

Results: We show that a bank of unknown input observers can be designed to recover true information from attacked sensors, i.e., recover the information without the effect of the attack. Therefore, the estimation obtained from those observers can be utilized for computing a control action that mitigates the effect of the attack.

Conclusions: This mitigation of the attack prevents a single sensor attack from signi cantly impair the action of low-level controllers, improving the resilience on the system just modifying the digital controller architecture. The development presented is limited to cyber-attacks on system sensors pre- sented one at a time, that still can compromise seriously the system behavior. Future work will address the extension of the presented results in situations with simultaneous attacks on more than one sensor, and/or consider attacks on the control system actuators.

Abstract (es)

Contexto: Este artículo es motivado por la necesidad de mejorar la resiliencia en sistemas de control industriales. Muchos de los sistemas de control que operan actualmente en la industria fueron diseñados e implementados antes de que se diera el boom de las comunicaciones (cableadas a inalámbricas) dentro de los sistemas de control industrial. Sin embargo, funcionan en red. Dicho incremento en la conectividad ha hecho a los sistemas susceptibles a ataques cibernéticos que buscan degeadar la operación adecuada del lazo de control con tan solo afectar un sensor.

Método: Utilizamos conceptos de control tolerante a fallos y teoría de control clásica para demostrar que es posible estimar el estado del sistema sin una (cualquiera) de las salidas del sistema. Este hecho se utiliza para recalcular la acción de control a partir de un algoritmo que detecta y aisla el ataque, evitando que este sea realimentado al sistema y, por ende, mitigando su efecto. Mostramos la efectividad de nuestra propuesta con simulaciones desarrolladas sobre Matlab y Simulink para un sistema de cuatro tanques. Resultados: Mostramos que se puede diseñar un banco de observadores de entrada desconocida para recuperar la información real de sensores atacados, es decir, recuperar la información del sensor sin el efecto del ataque. Por lo que, la estimación obtenida de dicho banco de observadores puede ser utilizada para para recalcular la acción de control que mitique el efecto del ataque.

Conclusiones: La mitigación de ataques propuesta previene que ataques en algún sensor puedan comprometer significativamente el desempeño del sistema, mejorando su resiliencia a partir únicamente de la modificacioón de la arquitectura del controlador digital (lo que implica la adición de algunas líneas de código en la implementación del controlador). El desarrollo presentado está limitado a ataques que ocurran de manera independiente en cualquier sensor, pero que aún así pueden afectar fuertemente el desempeño del sistema. El trabajo futuro considerará la extensión de los resultados presentados en situaciones donde ocurran ataques simultáneos en más de un sensor o, incluso, que afecten tambien los actuadores del sistema.

Author Biographies

Luis Francisco Cómbita, Universidad Distrital Francisco José de Caldas

Electronics engineer, BS degree from Universidad Distrital, Bogot´a, Colombia, 1992. He received the MS and PhD degrees in Electrical Engineering from Universidad de los Andes, Bogot´a, Colombia in 2002 and 2021, respectively. He joined the Engineering Faculty of Universidad Distrital as and Auxiliary Professor in 1997, where he currently works as an Assistant Professor. His current research interests include cyber-physical systems security, modeling and simulation of dynamical systems, and industrial control systems.

Nicanor Quijano, Universidad de los Andes,Universidad de Los Andes

Electronics engineer, BS degree from Pontificia Universidad Javeriana, Bogot´a, Colombia, 1999. He received the MS and PhD degrees in Electrical and Computer Engineering from Ohio State University, Columbus, OH, USA, in 2002 and 2006, respectively. He joined the Electrical and Electronics Engineering Department of Universidad de los Andes (Bogot´a) as an Assistant Professor in 2007, where he currently serves as a Full Professor and the Director of the Control and Automation Systems Research Group. His current research interests include hierarchical and distributed optimization methods using bio-inspired and game-theoretical techniques for dynamic resource allocation problems, especially those in energy, water, and transportation.

Alvaro Cárdenas, Universidad de California

Associate professor at the Department of Electrical and Computer Engineering of the University of California, Santa Cruz. He received his PhD and MS from University of Maryland, College Park, and his BS from Universidad de Los Andes, Colombia. His research interests include cyber-physical systems and IoT security and privacy, network intrusion detection, and wireless networks.

References

K. E. Hemsley and D. R. E. Fisher, "History of industrial control system cyber incidents," Tech. Rep., Idaho National Lab. (INL), Idaho Falls, ID, USA, Dec. 2018. [Online]. Available: https://doi.org/10.2172/1505628 DOI: https://doi.org/10.2172/1505628

R. M. Lee, M. J. Assante, and T. Conway, "Malicious control system cyber security attack case study - Maroochy water services, Australia," McLean, VA: The MITRE Corporation, 2008.

R. Langner, "Stuxnet: Dissecting a cyberwarfare weapon," IEEE Secur Priv, vol. 9, no. 3, pp. 49-51, May-Jun. 2011. [Online]. Available: https://doi.org/10.1109/MSP.2011.67 DOI: https://doi.org/10.1109/MSP.2011.67

A. Nourian and S. Madnick, "A systems theoretic approach to the security threats in cyber physical systems applied to Stuxnet," IEEE Trans. Dependable Secure Comput., vol. 15, no. 1, pp. 2-13, Jan.-Feb. 2018. [Online]. Available: https://doi.org/10.1109/TDSC.2015.2509994 DOI: https://doi.org/10.1109/TDSC.2015.2509994

M. Abrams and J. Weiss, "Analysis of the cyber attack on the Ukrainian power grid," SANS ICS Report, Mar. 2016.

Y. Z. Lun, A. D'Innocenzo, F. Smarra, I. Malavolta, and M. D. D. Benedetto, "State of the art of cyber-physical systems security: An automatic control perspective," J. Syst. Softw., vol. 149, pp. 174-216, Jul. 2019. [Online]. Available: https://doi.org/10.1016/j.jss.2018.12.006 DOI: https://doi.org/10.1016/j.jss.2018.12.006

H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, and J. Quevedo, "Bibliographical review on cyber attacks from a control oriented perspective," Annu. Rev. Control, vol. 48, pp. 103-128, Dec. 2019. [Online]. Available: https://doi.org/10.1016/j.arcontrol.2019.08.002 DOI: https://doi.org/10.1016/j.arcontrol.2019.08.002

L. Cao, X. Jiang, Y. Zhao, S. Wang, D. You, and X. Xu, "A survey of network attacks on cyber-physical systems," IEEE Access, vol. 8, pp. 44219-44227, Mar. 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2977423 DOI: https://doi.org/10.1109/ACCESS.2020.2977423

M. Kordestani and M. Saif, "Observer-based attack detection and mitigation for cyber-physical systems: A review," IEEE Syst. Man Cybern. Syst., vol. 7, no. 2, pp. 35-60, Mar. 2021. [Online]. Available: https://doi.org/10.1109/MSMC.2020.3049092 DOI: https://doi.org/10.1109/MSMC.2020.3049092

W. Duo, M. Zhou, and A. Abusorrah, "A survey of cyber attacks on cyber physical systems: Recent advances and challenges," IEEE/CAA J. Autom. Sin., vol. 9, DOI: https://doi.org/10.1109/JAS.2022.105548

H. Fawzi, P. Tabuada, and S. Diggavi, "Secure estimation and control for cyber-physical systems under adversarial attacks," IEEE Trans. Automat. Control, vol. 59, no. 6, pp. 1454-1467, Jun. 2014. [Online]. Available: https://doi.org/10.1109/TAC.2014.2303233 DOI: https://doi.org/10.1109/TAC.2014.2303233

Y. H. Chang, Q. Hu, and C. J. Tomlin, "Secure estimation based Kalman filter for cyber-physical systems against sensor attacks," Automatica, vol. 95, pp. 399-412, Nov. 2018. [Online]. Available: https://doi.org/10.1016/j.automatica.2018.06.010 DOI: https://doi.org/10.1016/j.automatica.2018.06.010

R. Deng, G. Xiao, and R. Lu, "Defending against false data injection attacks on power system state estimation," IEEE Trans. Industr. Inform., vol. 13, no. 1, pp. 198-207, Feb. 2017. [Online]. Available: https://doi.org/10.1109/TII.2015.2470218 DOI: https://doi.org/10.1109/TII.2015.2470218

L. F. Cómbita, N. Quijano, and A. A. Cárdenas, "On the stability of cyber-physical control systems with sensor multiplicative attacks," IEEE Access, vol. 10, pp. 39716-39728, 2022. [Online]. Available: https://doi.org/10.1109/ACCESS.2022.3164424 DOI: https://doi.org/10.1109/ACCESS.2022.3164424

L. An and G.-H. Yang, "Fast state estimation under sensor attacks: A sensor categorization approach," Automatica, vol. 142, p. 110395, Apr. 2022. [Online]. Available: https://doi.org/10.1016/j.automatica.2022.110395 DOI: https://doi.org/10.1016/j.automatica.2022.110395

P. Weng, B. Chen, S. Liu, and L. Yu, "Secure nonlinear fusion estimation for cyber-physical systems under FDI attacks," Automatica, vol. 148, p. 110759, Feb. 2023. [Online]. Available: https://doi.org/10.1016/j.automatica.2022.110759 DOI: https://doi.org/10.1016/j.automatica.2022.110759

C. Wang, J. Huang, D. Wang, and F. Li, "A secure strategy for a cyber physical system with multi-sensor under linear deception attack," J. Franklin Inst., vol. 358, no. 13, pp. 6666-6683, Sep. 2021. [Online]. Available: https://doi.org/10.1016/j.jfranklin.2021.06.029 DOI: https://doi.org/10.1016/j.jfranklin.2021.06.029

X. Wang and P. Zhao, "An adaptive control scheme against state-dependent sensor attacks and input-dependent actuator attacks in cyber-physical systems," IET Control Theory Appl., vol. 17, no. 8, pp.1061-1075, Mar. 2023. [Online]. Available: https://doi.org/10.1049/cth2.12443 DOI: https://doi.org/10.1049/cth2.12443

K. H. Johansson, "The quadruple-tank process: a multivariable laboratory process with an adjustable zero," IEEE Trans. Control Syst. Technol., vol. 8, no. 3, pp. 456-465, May 2000. [Online]. Available: https://doi.org/10.1109/87.845876 DOI: https://doi.org/10.1109/87.845876

G. F. Franklin, M. L. Workman, and D. Powell, "Digital Control of Dynamic Systems," 3rd ed., Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

K. Ogata, "Discrete-Time Control Systems," 2nd ed., USA: Prentice-Hall, Inc., 1995.

C. L. Phillips and H. T. Nagle, "Digital Control System Analysis and Design," 3rd ed., USA: Prentice-Hall, Inc., 1995.

X. He, Z. Wang, and D. Zhou, "Robust fault detection for networked systems with communication delay and data missing," Automatica, vol. 45, no. 11, pp. 2634-2639, Nov. 2009. [Online]. Available: https://doi.org/10.1016/j.automatica.2009.07.020 DOI: https://doi.org/10.1016/j.automatica.2009.07.020

J. Chen and R. J. Patton, "Robust Model-based Fault Diagnosis for Dynamic Systems," Norwell, MA, USA: Kluwer Academic Publishers, 1999. [Online]. Available: https://doi.org/10.1007/978-1-4615-5149-2 DOI: https://doi.org/10.1007/978-1-4615-5149-2

C. T. Chen, "Linear System Theory and Design," New York: Oxford University Press, Inc., 1984.

L. F. Cómbita, A. Cárdenas, and N. Quijano, "Mitigating sensor attacks against industrial control systems," IEEE Access, vol. 7, pp. 92444-92455, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2927484 DOI: https://doi.org/10.1109/ACCESS.2019.2927484

K. Liu, A. Selivanov, and E. Fridman, "Survey on time-delay approach to networked control," Annu Rev. Control, vol. 48, pp. 57-79, 2019. [Online]. Available: https://doi.org/10.1016/j.arcontrol.2019.06.005 DOI: https://doi.org/10.1016/j.arcontrol.2019.06.005

How to Cite

APA

Cómbita, L. F., Quijano, N., and Cárdenas, A. (2023). Defending State-Feedback Based Controllers Against Sensor Attacks. Ingeniería, 28(2), e20094. https://doi.org/10.14483/23448393.20094

ACM

[1]
Cómbita, L.F. et al. 2023. Defending State-Feedback Based Controllers Against Sensor Attacks. Ingeniería. 28, 2 (May 2023), e20094. DOI:https://doi.org/10.14483/23448393.20094.

ACS

(1)
Cómbita, L. F.; Quijano, N.; Cárdenas, A. Defending State-Feedback Based Controllers Against Sensor Attacks. Ing. 2023, 28, e20094.

ABNT

CÓMBITA, Luis Francisco; QUIJANO, Nicanor; CÁRDENAS, Alvaro. Defending State-Feedback Based Controllers Against Sensor Attacks. Ingeniería, [S. l.], v. 28, n. 2, p. e20094, 2023. DOI: 10.14483/23448393.20094. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/20094. Acesso em: 3 oct. 2023.

Chicago

Cómbita, Luis Francisco, Nicanor Quijano, and Alvaro Cárdenas. 2023. “Defending State-Feedback Based Controllers Against Sensor Attacks”. Ingeniería 28 (2):e20094. https://doi.org/10.14483/23448393.20094.

Harvard

Cómbita, L. F., Quijano, N. and Cárdenas, A. (2023) “Defending State-Feedback Based Controllers Against Sensor Attacks”, Ingeniería, 28(2), p. e20094. doi: 10.14483/23448393.20094.

IEEE

[1]
L. F. Cómbita, N. Quijano, and A. Cárdenas, “Defending State-Feedback Based Controllers Against Sensor Attacks”, Ing., vol. 28, no. 2, p. e20094, May 2023.

MLA

Cómbita, Luis Francisco, et al. “Defending State-Feedback Based Controllers Against Sensor Attacks”. Ingeniería, vol. 28, no. 2, May 2023, p. e20094, doi:10.14483/23448393.20094.

Turabian

Cómbita, Luis Francisco, Nicanor Quijano, and Alvaro Cárdenas. “Defending State-Feedback Based Controllers Against Sensor Attacks”. Ingeniería 28, no. 2 (May 31, 2023): e20094. Accessed October 3, 2023. https://revistas.udistrital.edu.co/index.php/reving/article/view/20094.

Vancouver

1.
Cómbita LF, Quijano N, Cárdenas A. Defending State-Feedback Based Controllers Against Sensor Attacks. Ing. [Internet]. 2023 May 31 [cited 2023 Oct. 3];28(2):e20094. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/20094

Download Citation

Visitas

54

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...