
DOI:
https://doi.org/10.14483/23448393.18860Published:
2023-02-28Issue:
Vol. 28 No. Suppl (2023): Bogotá, Committed with the Development of Science and TechnologySection:
Mechanical EngineeringWireless Real-Time Data Acquisition System for Aerodynamic Characterization of a Wind Turbine
Sistema inalámbrico de adquisición de datos en tiempo real para la caracterización aerodinámica de una turbina eólica
Keywords:
accelerometer, hot-wire anemometer, Bluetooth, wind power, wind tunnel (en).Keywords:
acelerómetro, anemómetro de hilo caliente, Bluetooth, energía eólica, túnel de viento (es).Downloads
Abstract (en)
Context: Wind energy sources utilize renewable, free, and environmentally friendly resources, so there are projects focused on the design of wind turbines to increase their efficiency. Simulations using computational fluid dynamics techniques allow designs to be analyzed. which, are then validated through experimentation and wind tunnel measurements.
Method: Data acquisition is performed by using Wind Sensor Rev.P sensors to measure wind velocity, and MMA7361 accelerometer to measure the vibrations generated by the wind in the turbine. Additionally, an ESP32 is required to process and transmit the data via Bluetooth, thus facilitating the installation of the real-time monitoring module inside the wind tunnel.
Results: A monitoring module with a sampling rate of 5 ms was obtained, thus allowing real-time data acquisition, with a resolution of 12 bits for good data capturing accuracy and a transmission rate of approximately 74000 bps. An application capable of plotting 3D acceleration and 2D wind speed signals was also created.
Conclusions: The device developed serves as a support for future wind turbine design projects since it is wireless, its installation is simple, it facilitates data collection inside a wind tunnel, and it allows visualizing the turbine’s behavior in real time by means of a graphic interface.
Abstract (es)
Contexto: Las fuentes de energía eólica aprovechan recursos renovables, gratuitos y respetuosos con el medioambiente, por lo cual existen proyectos enfocados en diseñar turbinas eólicas para aumentar su eficiencia. Las simulaciones mediante técnicas de dinámica de fluidos computacionales permiten analizar diseños, los cuales son luego validados mediante experimentación y mediciones en túneles de viento.
Método: La adquisición de datos se realiza mediante el uso de los sensores Wind Sensor Rev.P para medir la velocidad del viento y del acelerómetro MMA7361 para medir las vibraciones generadas por el viento en la turbina. Adicionalmente se requiere una ESP32 para procesar y transmitir los datos mediante Bluetooth, facilitando la instalación del módulo de monitoreo en tiempo real dentro del túnel de viento.
Resultados: Se obtuvo un módulo de monitoreo con una frecuencia de muestreo de 5 ms, lo que permite la adquisición de los datos en tiempo real, con una resolución de 12 bits para una buena precisión en la toma de datos y una velocidad de transmisión de aproximadamente 74000 bits por segundo. También se creó una aplicación capaz de graficar las señales de aceleración en 3D y velocidad del viento en 2D.
Conclusiones: El dispositivo desarrollado sirve como soporte para futuros proyectos de diseño de aerogeneradores, ya que es inalámbrico, su instalación es sencilla, facilita la recolección de datos dentro de un túnel de viento y permite visualizar el comportamiento de la turbina en tiempo real mediante una interfaz gráfica.
References
ENERLAC, «Mejora, aumento y facilitación del acceso a la educación y capacitación en energía renovable en América Latina.,» Revista de energía de Latinoamérica y el Caribe., 2020. [Online]. Available: http://enerlac.olade.org/index.php/ENERLAC/article/view/150
Á. L. P. Ghislaine Kieffer, «RENEWABLE ENERGY MARKET ANALYSIS LATIN AMERICA.,» IRENA, 2016.[Online]. Available: https://www.irena.org//media/Files/IRENA/Agency/Publication/2016/IRENA_Market_Analysis_Latin_America_2016.pdf
A. H. J. Camilo, “Análisis y optimizacion aerodinámica del prototipo de turbina eólica tipo savonius implementado en la facultad tecnológica,” Thesis, Dept. Mech. Eng, UD, Bogotá, Colombia 2018. [Online] Available: http://hdl.handle.net/11349/7853
R. S. de la calle Bernardo, “Estudio aerodinámico de un aerogenerador de eje vertical mediante técnicas de cálculo cfd,” Thesis, Dept. Mech. Eng, UPM, Madrid, España 2018. [Online]. Available: https://oa.upm.es/53294/
J. Mur Amada, "Curso de energía eólica". Dept. Elect. Eng, ESP: Univ of Zaragosa, 2009
J. Decaix, M. Dreyer, G. Balarac, M. Farhat, and C. Münch, “RANS computations of a confined cavitating tip-leakage vortex,” Eur. J. Mech. B/Fluids, vol. 67, pp. 198-210, 2018. https://doi.org/10.1016/j.euromechflu.2017.09.004 DOI: https://doi.org/10.1016/j.euromechflu.2017.09.004
E. R. Gowree, C. Jagadeesh, E. Talboys, C. Lagemann, and C. Brücker, “Vortices enable the complex aerobatics of peregrine falcons,” Commun. Biol., vol. 1, art. 27, Apr. 2018. https://doi.org/10.1038/s42003-018-0029-3 DOI: https://doi.org/10.1038/s42003-018-0029-3
S. Zaghi, R. Muscari, and A. Di Mascio, “Assessment of blockage effects in wind tunnel testing of wind turbines,” J. Wind Eng. Ind. Aerodyn., vol. 154, pp. 1-9, Jul. 2016. https://doi.org/10.1016/j.jweia.2016.03.012 DOI: https://doi.org/10.1016/j.jweia.2016.03.012
G. Droandi, G. Gibertini, and A. Zanotti, “Perpendicular blade–vortex-interaction over an oscillating airfoil in light dynamic stall,” J. Fluids Struct., vol. 65, pp. 472-494, 2016. https://doi.org/10.1016/j.jfluidstructs.2016.07.010 DOI: https://doi.org/10.1016/j.jfluidstructs.2016.07.010
M. Maizi, M. H. Mohamed, R. Dizene, and M. C. Mihoubi, “Noise reduction of a horizontal wind turbine using different blade shapes,” Renew. Energy, vol. 117, pp. 242-256, Mar. 2018. https://doi.org/10.1016/j.renene.2017.10.058 DOI: https://doi.org/10.1016/j.renene.2017.10.058
J. G. Huilca -Salcedo and P. F. Sichiqui- Velecela, “Diseño e implementación de un sistema embebido de monitoreo de las variables climáticas para plantaciones de maíz,” Thesis, Dept. Elect. Eng, UPS, Cuenca, Ecuador 2019. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/17338
A. B. Z. Zuraida, S. D. S. Fairuz, and M. S. Risby, “Conceptual design of wireless DAQ system for vehicle blast testing,” Procedia Comput. Sci., vol. 94, pp. 502-509, 2016. https://doi.org/10.1016/j.procs.2016.08.078 DOI: https://doi.org/10.1016/j.procs.2016.08.078
T. Sumphao, C. Thanachayanont, and T. Seetawan, “Design and implementation of a low cost DAQ system for thermoelectric property measurements,” Procedia Eng., vol. 32, pp. 614-620, 2012. https://doi.org/10.1016/j.proeng.2012.01.1317 DOI: https://doi.org/10.1016/j.proeng.2012.01.1317
P. T. Le, H. L. Tsai, and T. H. Lam, “A wireless visualization monitoring, evaluation system for commercial photovoltaic modules solely in MATLAB/Simulink environment,” Sol. Energy, vol. 140, pp. 1-11, Dec. 2016. https://doi.org/10.1016/j.solener.2016.10.043 DOI: https://doi.org/10.1016/j.solener.2016.10.043
S. Iswahyudi, Sutrisno, Prajitno, and S. B. Wibowo, “Effect of blade tip shapes on the performance of a small HAWT: An investigation in a wind tunnel,” Case Stud. Therm. Eng., vol. 19, art. 100634, Jun. 2020. https://doi.org/10.1016/j.csite.2020.100634 DOI: https://doi.org/10.1016/j.csite.2020.100634
Q. Zhang, C. Su, and Y. Wang, “Numerical investigation on aerodynamic performance and stability of a sedan under wind–bridge–tunnel road condition,” Alexandria Eng. J., vol. 59, no. 5, pp. 3963-3980, Oct. 2020. https://doi.org/10.1016/j.aej.2020.07.004 DOI: https://doi.org/10.1016/j.aej.2020.07.004
W. Zhang, J. Sun, L. Wang, J. Wu, and L. He, “Rotor airfoil aerodynamic design method and wind tunnel test verification,” Chinese J. Aeronaut., vol. 33, no. 8, pp. 2123-2132, Aug. 2020. https://doi.org/10.1016/j.cja.2020.03.013 DOI: https://doi.org/10.1016/j.cja.2020.03.013
F. Xue et al., “Optimization and verification of wind tunnel free-flight similarity law for separation of cluster munition,” Chinese J. Aeronaut., vol. 34, no. 3, pp. 61-70, Mar. 2021. https://doi.org/10.1016/j.cja.2020.09.034 DOI: https://doi.org/10.1016/j.cja.2020.09.034
BRANZ Ltd, “Wind turbine systems,” 2022, [Online]. Available: https://www.level.org.nz/energy/renewable-electricity-generation/wind-turbine-systems/
J. A. González, R. Pérez, A. Santos, and M. A. Gil, Centrales de energías renovables. Generación eléctrica con energías renovables, Madrid, Spain: UNED, Pearson, Prentice Hall, 2009
R, Aguilar, “Mejora de la eficiencia aerodinamica en turbinas eolicas mediante dispositivos hipersustentadores,” M.S. thesis, Dept. Prod. Eng. Eng, UNSA, Arequipa, Peru 2017. [Online]. Available: http://repositorio.unsa.edu.pe/handle/UNSA/4561
IDEAM, “Atlas Interactivo - Vientos - IDEAM,” 2020, [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html
F. Camacho, D. García, and M. R, “Caracterización de un túnel de viento de bajas velocidades,” Rev. Colomb. Física, vol. 43, no. 3, pp. 669-674, 2011. http://fisica.udea.edu.co/ojs/ojs/index.php/rcf/article/view/430325.html
Milich, Franco G.; Alvarez y Alvarez, Gisela M. ; Chuaire, Mauricio L.; Veroli, Cesar G. ; Wittwer, Adrián R.. (2018). Assessment: Diseño y construcción del modelo a escala de un aerogenerador de eje horizontal para estudios experimentales. Presented at UNNE: Jornadas de Jóvenes Investigadores AUGM, Mendoza, Argentina. [Online]. Available: https://bdigital.uncu.edu.ar/fichas.php?idobjeto=12725
S. M. MEJÍA URQUIJO and L. J. CARDONA MONTES, “AUTOMATIZACIÓN DE UN TÚNEL DE VIENTO PARA ESTUDIOS DE COMPORTAMIENTO DE VUELO DE INSECTOS,” Thesis, Dept. Elect. Eng, UTP, Pereira, Colombia 2016. [Online] Available: https://hdl.handle.net/11059/6351
F1, “Túneles de viento (II) - F1 al día,” 2010, [Online]. Available: https://www.f1aldia.com/10680/tuneles-de-viento-ii/
M. Á. MENDOZA MARTÍNEZ, “CARACTERIZACIÓN DEL FLUJO DEL TÚNEL OE VIENTO DE LA UNIVERSIDAD DE QUINTANA ROO,” Thesis, Dept. Energy Sci. Eng, UAEQROO, Chetumal, Mexico 2019. [Online] Available: http://hdl.handle.net/20.500.12249/2256
T.K. Hareendran, “Measuring air,” Electro Schematics, 2015 [Online]. Available: https://www.electroschematics.com/measuring-air-flow/
Modern Device, “Wind Sensor Rev. P.” [Online]. Available: https://moderndevice.com/product/wind-sensor-rev-p/
R. Moya and D. Prohasky, “Tutorial – Mini Airflow Tunnel Project,” 2014. [Online]. Available: https://miniwindtunnel.wordpress.com/tutorial/
TEM Electronic Components, “¿Cómo funciona y qué hace el acelerómetro?,” 2020 [Online]. Available: https://www.tme.eu/es/news/library-articles/page/22568/Como-funciona-y-que-hace-el-acelerometro/
N. E. Daza-González and Y. A. Fragozo-Liñan, “ARREGLO DE ACELERÓMETROS PARA EL ESTUDIO BÁSICO DE LA PROPAGACIÓN DE ONDAS MECÁNICAS,” Thesis, Dept. Elect. Eng., UPB, Bucaramanga, Colombia 2018. [Online] Available: http://hdl.handle.net/20.500.11912/5408
R. Apaza, J. Apaza, L. Dávila, I. Olivares, and J. Pariapaza, “El Acelerómetro una Puerta a otros Avances Tecnológicos y su Aplicación en la Ingeniería Civil,” Dept. Civil. Eng, Univ. Nac. San Agustin, Arequipa, Perú, 2019. [Online]. Available: https://www.academia.edu/43597818/Resumen_Recientemente_el_Monitoreo_de_Fen%C3%B3menos?auto=citations&from=cover_page
Jonathan Haro, “MMA7361 sensor acelerómetro,” Hetpro, 2015 [Online]. Available: https://hetpro-store.com/TUTORIALES/mma7361-sensor-acelerometro/
Freescale Semiconductor, "±1.5g, ±6g Three Axis Low-g Micromachined Accelerometer", MMA7361LC datasheet, Oct. 2011. Accessed: Apr. 24, 2021. [Online]. Available: https://www.nxp.com/docs/en/data-sheet/MMA7361LC.pdf
P. Bertoleti, “Proyectos com ESP32 y LoRa,”. NCB, SAO, BR: Instituto Newton C. Braga, 2019
ESPRESSIF, “Touch Sensor - ESP32 - ESP-IDF Programming Guide latest documentation,” 2021, [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/touch_pad.html%0Ahttps://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html
L. Llamas, “ESP32, el ‘hermano mayor’ del ESP8266 con WiFi y Bluetooth,” 2018, [Online]. Available: https://www.luisllamas.es/esp32/
MATLAB, “MATLAB App Designer,” 2020 [Online]. Available: https://www.mathworks.com/products/matlab/app-designer.html
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Jhoan S. Casallas, Hector Guillermo Parra-Peñuela, Elvis E. Gaona

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.