Obtención de modelos de carga compuestos en sistemas de potencia para análisis dinámico: revisión y aplicación

Composite load models in power systems for dynamical analysis: review and application

  • Sandra Milena Pérez Londoño Universidad Tecnológica de Pereira
  • Luis Fernando Rodríguez García Universidad Tecnológica de Pereira
  • Juan José Mora Flórez Universidad Tecnológica de Pereira

Resumen (es_ES)

En este artículo se presenta una revisión de las metodologías principales empleadas en la obtención de modelos de carga compuestos en sistemas eléctricos de potencia. Como estrategia de presentación de esta investigación, inicialmente se realiza la descripción y clasificación de las metodologías empleadas para obtener los modelos de carga compuestos, de sus diferentes modificaciones y de la utilización de nuevas herramientas durante los últimos años, de acuerdo con la información disponible en más de 60 referencias encontradas en las principales bases de datos. Las ventajas del modelo de carga compuesto se comprueban en la parte final del artículo, en donde se compara su comportamiento con el modelo de carga estático y se hace un análisis de la capacidad de generalización ante diferentes perturbaciones del sistema de potencia.

Este trabajo sirve como una referencia útil en la discusión relacionada con aplicaciones del modelado de carga en los sistemas eléctricos de potencia.

Resumen (en_US)

This paper is oriented to present a review of different approaches commonly applied to obtain composite load models used in electric power system studies. As presentation strategy, there is initially a detailed description and classification of the methodologies used to obtain composite load models, their different modifications and the use of new tools during the last years, according to the available information from more than 60 references found in databases. The advantages of composite load model are evaluated and highlighted at the final part of this paper, where its behavior is compared to the static load model and an analysis of the generalization capability considering different power system disturbances is presented.

This research work is a useful reference in the discussion associated to applications of load modeling in electric power systems.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sandra Milena Pérez Londoño, Universidad Tecnológica de Pereira
Ingeniera electricista, magíster en Ingeniería Eléctrica, doctora en Ingeniería. Docente de la Universidad Tecnológica de Pereira. Pereira.
Luis Fernando Rodríguez García, Universidad Tecnológica de Pereira
Ingeniero electricista, magíster en Ingeniería Eléctrica. Investigador de la Universidad Tecnológica de Pereira. Pereira.
Juan José Mora Flórez, Universidad Tecnológica de Pereira
Ingeniero electricista, magíster en Potencia Eléctrica, magíster en Tecnologías de la Información, doctor en Tecnologías de la Información,  docente de la Universidad Tecnológica de Pereira. Pereira.

Referencias

Abdelaziz, A., Badr, M., & Younes, A. (Nov. 2007). Dynamic load modeling of an Egyptian primary distribution system using neural networks. International Journal of Electrical Power & Energy Systems, 29(9), 637-649.

Abul'Wafa, A. (2012). A network-topology-based load flow for radial distribution networks with composite and exponential load. Electric Power Systems Research, 91, 37-43.

Alinejad, B., Akbari, M., & Kazemi, H. (2012). PMU-based distribution network load modelling using Harmony Search Algorithm. Proceedings of 17th Conference on Electrical Power Distribution Networks, pp. 1-6.

Aree, P. (2014). Power Flow Computation Considering Nonlinear Characteristics of Composite Load Model. Proceedings of the International Electrical Engineering Congress (iEECON), pp. 1-4.

Chen, D., & Mohler, R. (July 2003). Neural-Network-Based Load Modeling and its Use in Voltage Stability Analysis. IEEE Transactions on Control Systems Technology, 11(11), 460-470.

Chen, Q., Ju, P., Shao, Z.-Y., & Wu, F. (2007). Electrical Load Modeling with Considering Distribution Network. Proceedings of 2007 iREP Symposium Bulk Power System Dynamics and Control, pp. 1-6.

Chen, Q., Ju, P., Shi, K., Tang, Y., Shao, Z., & Yang, W. (2010). Parameter estimation and comparison of the load models with considering distribution network directly and indirectly. International Journal of Electrical Power and Energy Systems, 32(9), 965-968.

Choi, B., & Chiang, H. (May 2009). Multiple Solutions and Plateau Phenomenon in Measurement-Based Load Model Development: Issues and Suggestions. IEEE Transactions on Power Systems, 24(2), 824-831.

Choi, B., Chiang, H., & Yu, D. (2009). Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling. Proceedings of IEEE PES General Meeting. Calgary.

Choi, B., Chiang, H., Li, Y., Li, H., Chen, Y., Huang, D., & Lauby, M. (Aug. 2006). Measurement-based Dynamic Load Models: Derivation, Comparison and Validation. IEEE Transactions on Power Systems, 21(3), 1276-1283.

Choi, B.-K., Chiang, H.-D., Li, Y., Chen, Y.-T., Huang, D.-H., & Lauby, M. (2006). Development of Composite Load Models of Power Systems using On-line Measurement Data. Proceedings of IEEE PES General Meeting. Montreal.

De Tuglie, E., Patrono, G., & Torelli, F. (2005). A sensitivity-based approach for static and dynamic load parameter estimation. Proceedings of IEEE Russia Power Tech. St. Petersburg.

Department of Energy and Climate Change (DECC). (2010). Energy Trends: Electricity and Electricity Consumption in the UK. National Statistics Publications.

Diaz, G., González, C., Gómez, J., & Diez, A. (2010). Composite Loads in Stand-Aline Inverter-Based Microgrids-Modeling Procedure and Effects on Load Margin. IEEE Transactions on Power Systems, 25(2), 894-905.

General Electric Company (1987). EPRI Final Report EL-5003: Load modeling for powerflow and transient stability computer studies.

Guoping, S., Jun, L., & Xiangsheng, L. (2011). Load clustering and synthetic modeling based on an improved fuzzy C means clustering algorithm. Proceedings of 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 859-865. Shandong.

Han, D., Ma, J., He, R.-M., & Dong, Z.-Y. (2009). A Real Application of Measurement-Based Load Modeling in Large Scale Power Grids and Its Validation. IEEE Transitions on Power Systems, 24(4), 1756-1764.

He, R.-M., Ma, J., & Hill, D. (May 2006). Composite Load Modeling via Measurement Approach. IEEE Transactions on Power Systems, 21(2), 663-672.

IEEE Task Force on Load Representation for Dynamic Performances. (May 1993). Load representation for dynamic perfomance analysis. IEEE Transactions on Power Systems, 8(2), 472-482.

IEEE Task Force on Load Representation for Dynamic Performances. (Feb. 1995a). Bibliography on load models for power flow and dynamic perfomance simulation. IEEE Transactions on Power Systems, 10(1), 523-538.

IEEE Task Force on Load Representation for Dynamic Performances. (Aug. 1995b). Standard Load Models for Power Flow and Dynamic Performance Simulation. IEEE Transactions on Power Systems, 1302-1313.

Ju, P., Qin, C., Wu, F., Xie, H., & Ning, Y. (2011). Load modeling for wide area power system. Electrical Power and Energy Systems, 33, 909-917.

Ju, P., Wu, F., Shao, Z.-Y., Zhang, X.-P., Fu, H.-J., Zhang, P.-F., Han, J.-D. (Sept. 2007). Composite load models based on field measurements and their applications in dynamic analysis. IET Generation, Transmission and Distribution, 1(5), 724-730.

Kalesar, B., & Seifi, A. (2010). Fuzzy load flow in balanced and unbalanced radial distribution systems incorporating composite load model. Electrical Power and Energy Systems, 17-23.

Kao, W. (Aug. 2001). The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Taipower System Experience w/wo Power System Stabilizers. IEEE Transactions on Power Systems, 16(3), 463-472.

Keyhani, A., Lu, W., & Heydt, G. (2004). Composite Neural Netwrok Load Models for Power System Stability Analysis. Proceedings of IEEE Power Systems Conference & Exposition, pp. 1159-1163.

Knyazkin, V., Cañizares, C., & Söder, L. (May 2004). On the Parameter Estimation and Modeling of Aggregate Power System Loads. IEEE Transactions on Power Systems, 19(2), 1023-1031.

Kosterev, D., & Meklin, A. (2006). Load Modeling in WECC. Proceedings of Power Systems Conference and Exposition PSCE, pp. 576-581.

Kosterev, D., Meklin, A., Undrill, J., Lesieutre, B., Price, W., Chassin, D., Yang, S. (2008). Load Modeling in Power System Studies: WECC Progress Update. Proceedings of PES General Meeting, pp. 1-8.

Kosterev, D., Taylor, C., & Mittelstadt, W. (Aug. 1999). Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems, 14(3), 967-979.

Kundur, P. (1993). Power System Stability and Control. New York: McGraw-Hill.

Lee, D., Gonzales, L., Periaux, J., & Srinivas, K. (Apr. 2011). Efficient hybrid-game strategies coupled to evolutionary algorithms for robust multidisciplinary design optimization in aerospace engineering. IEEE Transactions on Evolutionary Computation, 15(2), 133-150.

Li, L., Xie, X., Yan, J., & Han, Y. (2007). Fast Online Identification of the Dominant Parameters of Composite Load Model Using Volterra Model and Pattern Classification. Proceedings of IEEE PES General Meeting, pp. 1-8.

Li, X., Wang, L., & Li, P. (2008). The Study on Composite Load Model Structure of Artificial Neural Network. Proceedings of 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. NanJing. pp. 1564-1570.

Ma, J., Han, D., He, R.-M., Dong, Z.-Y., & Hill, D. (2008). Reducing Identified Parameters of Measurement-Based Composite Load Model. IEEE Transactions on Power Systems, 23(1), 76-83.

Ma, J., He, R., & Hill, D. (May 2006). Load Modeling by Finding Support Vectors of Load Data from Field Measurements. IEEE Transactions on Power Systems, 21(2), 726-735.

Ma, J., He, R.-M., & Hill, D. (2007). Measurement-based Load Modeling using Genetic Algorithms. Proceedings of IEEE Congress on Evolutionary Computation, pp. 2909-2916.

Ma, J., Zheng, X.-Y., Tang, Y.-H., & Dong, Z.-Y. (2009). Validating Measurement-Based Composite Load Model. Proceedings of 8th International Conference on Advances in Power System Control, Operation and Management, pp. 1-6.

Maitra, A., Gaikwad, A., Pourbeik, P., & Brooks, D. (2008). Load Model Parameter Derivation Using an Automated Algorithm and Measured Data. Proceedings of IEEE PES Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-7.

Mauricio, W., & Semlyen, A. (Nov. 1972). Effect of load characteristics on the dynamic stability of power systems. IEEE Transactions on Power Apparatus and Systems, 14(3), 2295-2304.

McDonnell, J., Reynolds, J., & Fogel, D. (1995). Special Session on Applications of evolutionary computation to biology and biochemistry. MIT Press.

Milanovic, J., Yamashita, K., Martinez, S., Djokie, S., & Korunovic, L. (Aug. 2013). International Industry Practice on Power System Load Modeling. IEEE Transactions on Power Systems, 28(3).

Najafabadi, A., & Alouani, A. (2012). Real time estimation of sensitive parameters of composite power system load model. Proceedings of 2012 IEEE Power and Energy Society Transmission and Distribution Conference and Exposition. Orlando. pp. 1-8.

Nozari, F., Kankam, M., & Price, W. (Nov. 1987). Aggregation of Induction Motors for Transient Stability Load Modeling. IEEE Transactions on Power Systems, 2(4), 1096-1103.

Ornata, T., & Uemura, K. (Nov. 1998). Aspects of Voltage Responses of Induction Loads. IEEE Transactions on Power Systems, 13(4), 1337-1344.

Peng, W., Yan-hong, W., Guo-qiang, H., & Rui, M. (2005). Study on the Reduction of Identified Parameters of the Power Load's Aggregated Motor Model with the AIm of Sustaining Its Representabilidad. Proceedings of IEEE PES Transmission and Distribution Conference and Exhibition: Asia and Pacific.

Pereira, L., Kosterev, D., Mackin, P., Davies, D., Undrill, J., & Zhu, W. (Nov. 2002). An Interim Dynamic Induction Motor Model for Stability Studies in the WSCC. IEEE Transactions on Power Systems, 17(4), 1108-1115.

Rifaat, R. (2004). On Composite Load Modeling for Voltage Stability and Under Voltage Load Shedding. Proceedings of IEEE PES General Meeting, pp. 1603-1610).

Rodriguez, L., Perez, S., & Mora, J. (2013). Particle Swarm Optimization applied in Power System Measurement-Based Load Modeling. Proceedings of IEEE Congress on Evolutionary Computation, pp. 2368-2375. Cancún.

Shi, G., Peng, G., & Liu, X. (2012). Comparative Research on Power Load Modeling Method in Power Electrical System. Proceedings of Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 455-458.

Shi, J., & He, R. (2003). Measurement-based load modeling–model structure. Proceedings of IEEE PowerTech Conference. Bologna.

Son, S., Lee, S., Choi, D., Song, K., Park, J., Kwon, Y., . . . Park, J. (2014). Improvement of Composite Load Modeling Based on Parameter Sensitivity and Dependency Analyses. IEEE Transactions on Power Systems, 242-250.

Song, J., Cotilla-Sanchez, E., & Brekken, T. (2013). Load Modeling Methodologies for Cascading Outage Simulation Considering Power System Stability. 1st IEEE Conference on Technologies for Sustainability (SusTech), pp. 78-85.

University of Washington. (1999). Electrical Engineering. Obtenido de http://www.ee.washington.edu/research/pstca/

Wang, J., Han, M., & Ma, J. (2010). A New Identification Strategy for Improving Convergence Stability of Load Model Parameters. Proceedings of International Conference on Electrical and Control Engineering, pp. 45-148.

Wang, J., Jiang, H., Chang, C., & Liu, A. (Feb. 1994). Development of a frequency-dependent composite load model using measurement approach. IEEE Transactions on Power Systems, 9(3), 1546-1556.

Wang, J., Li, X., Su, S., & Xia, X. (2006). Research on Dunamic Load Modeling Using Back Propagation Neural Network for Electric Power System. Proceedings of International Conference on Power System Technology, pp. 1-4.

Wei-guo, W., Ren-mu, H., & Tie-Qiang, W. (2002). The induction motor model to reflect dynamic mechanism of synthetic load. Automation of Electric Power Systems, 26(4), 23-27.

Wen, J., Jiang, L., Wu, Q., & Cheng, S. (2003). Power System Load Modeling by Learning Based on System Measurements. IEEE Transactions on Power Delivery, 18(2), 364-371.

Wu, Q., Wen, J., Nuttall, K., Shimmin, D., & Cheng, S. (2003). Power System Load Modeling by Evolutionary Computation Based on System Measurements. Electric Power Components and Systems, 31(5), 423-439.

Xin-ran, L., Ren-mu, H., & Zhou, W. (1999). The General Induction Motor Model and its description ability for synthetic loads for electric power system. Journal of North China Electric Power University, 26(1).

Xu, Y., Dong, Z., Meng, K., Yao, W., Zhang, R., & Wong, K. (2014). Multi-Objective Dynamic VAR Planning Against Short-Term Voltage Instability Using a Decomposition-Based Evolutionary Algorithm. IEEE Transactions on Power Systems, 29(6), 2813-2822.

Xu, Y., Si, D., & Qian, Y. (2011). Research on Feasibility of Composite Load Modeling Based on WAMS. Proceedings of 2011 Asia-Pacific Power and Energy Engineering Conference, pp. 1-4. Wuhan.

Yu, X., & Gen, M. (2010). Introduction to Evolutionary Algorithms (Decision Engineering). London: Springer-Verlag.

Zali, S., & Milanovic, J. (2013). Generic Model of Active Distribution Network for Large Power System Stability Studies. IEEE Transactions on Power Systems, 28(3), 3126-3133.

Zhang, P., & Bai, H. (2008). Derivation of Load Model Parameters using Improved Genetic Algorithm. Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 970-977.

Cómo citar
Pérez Londoño, S. M., Rodríguez García, L. F., & Mora Flórez, J. J. (2015). Obtención de modelos de carga compuestos en sistemas de potencia para análisis dinámico: revisión y aplicación. Tecnura, 19(44), 171-190. https://doi.org/10.14483/udistrital.jour.tecnura.2015.2.a13
Publicado: 2015-04-01
Sección
Revisión