El Aprendizaje Móvil en Educación Superior: Una Experiencia desde la Formación de Ingenieros

Mobile learning in higher education: an experience from Engineering Education

  • Vladimir Alfonso Ballesteros-Ballesteros Fundación Universitaria Los Libertadores
  • Óscar Iván Rodríguez-Cardoso Fundación Universitaria Los Libertadores https://orcid.org/0000-0003-1203-4999
  • Sébastien Lozano-Forero Fundación Universitaria Los Libertadores https://orcid.org/0000-0002-9551-165X
  • Jorge Luis Nisperuza-Toledo Fundación Universitaria Los Libertadores
Palabras clave: Mobile Learning, Engineering Education, notion of limit, digital technologies, Geogebra (en_US)
Palabras clave: Aprendizaje móvil, formación de ingenieros, noción de límite, tecnologías digitales, Geogebra (es_ES)

Resumen (es_ES)

Este artículo presenta los resultados de un proyecto de investigación desarrollado en la Facultad de Ingeniería y Ciencias Básicas de la Fundación Universitaria Los Libertadores (Bogotá, D.C.), cuyo objetivo fue describir los efectos y las experiencias de la incorporación de la aplicación “Calculadora Gráfica” de GeoGebra sobre el aprendizaje de la noción de límite a partir de la integración de dispositivos móviles al aula de clase. Se empleó un diseño explicativo secuencial con el ánimo de validar la hipótesis relacionada con una influencia positiva del aprovechamiento de teléfonos inteligentes y tabletas en el desempeño académico. En la etapa cuantitativa se realizó un diseño experimental de cuatro grupos de Solomon y durante la etapa cualitativa se aplicó un test actitudinal y se desarrollaron entrevistas semiestructuradas con estudiantes que participaron del tratamiento con la aplicación móvil. Los resultados obtenidos en el postest por los grupos experimentales superaron a los obtenidos por los grupos control que participaron de una intervención mediada por recursos didácticos tradicionales. Los estudiantes que recibieron el tratamiento experimental demostraron mayor interés y motivación por el aprendizaje del tema abordado, por lo que se puede inferir que la integración de dispositivos móviles en el aula promueve otras formas innovadoras de aprender cálculo.

Resumen (en_US)

This article presents the results of a research project performed at the Faculty of Engineering and Basic Sciences of the Fundación Universitaria Los Libertadores (Bogotá, DC), whose objective was to describe the effects and experiences of incorporating the GeoGebra “Graphing Calculator” app on learning the notion of limit from the integration of mobile devices in the classroom. A sequential explanatory design was used in order to judge the hypothesis linking a positive influence of the use of smartphones and tablets and academic performance. In the quantitative stage, an experimental design of four Solomon groups was carried out and during the qualitative stage, an attitudinal test was applied and semi-structured interviews were carried out with students who participated in the treatment with the mobile application. The results obtained in the postest by the experimental groups surpassed those obtained by the control groups that participated in an intervention based on traditional teaching resources. The students who received the experimental treatment showed greater interest and motivation for learning about the topic addressed, so it can be inferred that the integration of mobile devices in the classroom promotes other innovative ways of learning calculus.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Alwraikat, M. A., & Al Tokhaim, H. (2014). Exploring the potential of mobile learning use among faculty members. International Journal of Interactive Mobile Technologies (iJIM), 8(3), 4-10. http://dx.doi.org/10.3991/ijim.v8i3.3682

Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile learning in higher education. Computers in Human Behavior, 56, 93–102. https://doi:10.1016/j.chb.2015.11.033

Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Computers & Education, 125, 389–412. https://doi.org/10.1016/j.compedu.2018.06.008.

Alwraikat, M. (2017). Smartphones as a New Paradigm in Higher Education Overcoming Obstacles. International Journal of Interactive Mobile Technologies (IJIM), 11(4), 114-135. http://dx.doi.org/10.3991/ijim.v11i4.6759.

Ballesteros, V., Lozano, S., & Rodríguez, Ó. (2020). Noción de aproximación del área bajo la curva utilizando la aplicación Calculadora Gráfica de GeoGebra. Praxis & Saber, 11(26), 1–16. https://doi.org/10.19053/22160159.v11.n26.2020.9989

Baran, I., (2007). KSEG. www.mit.edu/~ibaran/kseg.html

Braver, M., & Braver, S. (1988). Statistical treatment of the Solomon four-group design: A meta-analytic approach. Psychological Bulletin, 104(1), 150. https://doi.org/10.1037/0033-2909.104.1.150.

Cheema, S., Gulwani, S., & LaViola, J. (2012). QuickDraw: improving drawing experience for geometric diagrams. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 1037-1064. https://doi.org/10.1145/2207676.2208550

Ehmann, M., Gerhauser, M., Miller, C., & Wassermann, A. (2013). Sketchometry and jsxgraph-dynamic geometry for mobile devices. South Bohemia Mathematical Letters, 21(1), 1-7.

Feist, D., & Reid, D. (2018). Technology and teaching: Technology and student-centered pedagogy in 21st century classrooms. In Handbook of Research on Digital Content, Mobile Learning, and Technology Integration Models in Teacher Education (pp. 69–87). https://doi.org/10.4018/978-1-5225-2953-8.

Fernandes, H., Ducasse, S., & Carron, T. (2007, January). Dr. Geo II: Adding interactivity planes in interactive dynamic geometry. In Fifth International Conference on Creating, Connecting and Collaborating through Computing (C5'07) (pp. 153-162). IEEE. https://doi.org/10.1109/C5.2007.12

Hamidi, H., & Chavoshi, A. (2018). Analysis of the essential factors for the adoption of mobile learning in higher education: A case study of students of the University of Technology. Telematics and Informatics, 35(4), 1053–1070. https://doi.org/10.1016/j.tele.2017.09.016

Hao, S., Dennen, V. P., & Mei, L. (2017). Influential factors for mobile learning acceptance among Chinese users. Educational Technology Research and Development, 65(1), 101–123. https://doi.org/10.1007/s11423-016-9465-2.

Hohenwarter, M., & Fuchs, K. (2004, July). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. In Computer algebra systems and dynamic geometry systems in mathematics teaching conference (pp. 3810-193).

Hussin, S., Yusoff, J. M., Mustaffa, S. S., & Mokmin, N. M. (2018). The Effectiveness of Using GeoGebra Software in Teaching Angle in Circle. International Journal of Computer and Information Technology, 7(05). https://doi.org/10.26666/rmp.ajtve.2018.3.1

Ioannou, P., Rodiou, E., & Iliou, T. (2017). Pictures with Narration versus Pictures with On-Screen Text during Teaching Mathematics. Research in Pedagogy, 7(1), 57–68. https://doi.org/10.17810/2015.48

Jackiw, N. (2001). The Geometer’s Sketchpad (Version 4.0) [Computer software]. Emeryville, CA: KCP Technologies.

Janičić, P., & Quaresma, P. (2006). System description: Gclcprover+ geothms. In International Joint Conference on Automated Reasoning (pp. 145-150). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_13

Jeno, L. M., Adachi, P. J. C., Grytnes, J., Vandvik, V., & Deci, E. L. (2019). The effects of m‐learning on motivation, achievement and well‐being: A Self‐Determination Theory approach. British Journal of Educational Technology, 50(2), 669–683. https://doi.org/10.1111/bjet.12657

Koh, J. H. L., Chai, C. S., Benjamin, W., & Hong, H.-Y. (2015). Technological Pedagogical Content Knowledge (TPACK) and design thinking: A framework to support ICT lesson design for 21st century learning. The Asia-Pacific Education Researcher, 24(3), 535–543. https://doi.org/10.1007/s40299-015-0237-2.

Laborde, J. M. (1990). Cabri-géomètre: A microworld of geometry for guided discovery learning. Zentralblatt für didaktik der mathematik, 5, 171-177.

Martin, F., & Ertzberger, J. (2013). Here and now mobile learning: An experimental study on the use of mobile technology. Computers & Education, 68, 76–85. https://doi:10.1016/j.compedu.2011.04.003.

Maulyda, M. A., Hidayanto, E., & Rahardjo, S. (2019). Representation of Trigonometry Graph Funcsion Colage Students Using GeoGebra. International Journal of Trends in Mathematics Education Research, 2(4), 193-196. https://doi.org/10.33122/ijtmer.v2i4.100

Plaza-Galvez, L. F. (2016). Obstáculos presentes en Modelación Matemática. Caso Ecuaciones Diferenciales en la formación de Ingenieros. Revista Científica, 2(25), 176-187. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a1

Prada-Núñez, R., Hernández-Suárez, C., & Ramírez-Leal, P. (2016). Comprensión de la noción de función y la articulación de los registros semióticos que la representan entre estudiantes que ingresan a un programa de Ingeniería. Revista Científica, 2(25), 188-205. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a3

Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002

Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella: [covers Euclidean, hyperbolic and elliptic geometry; unique mathematical and technical treatment of continuity, complete and fast loc; Cinderella runs on Windows, MacOS, Solaris, Linux and any other Java TM-1.1-enabled platform]. Springer.

Saavedra-Bautista, C., Cuervo-Gómez, W. y Mejía-Ortega, I. (2017) Producción de contenidos transmedia, una estrategia innovadora. Revista científica, (28), 6-16. https://dx.doi.org/10.14483/udistrital.jour.rc.2016.28.a1

Sangwin, C. J., & Köcher, N. (2016). Automation of mathematics examinations. Computers & Education, 94, 215–227. https://doi.org/doi.org/10.1016/j.compedu.2015.11.014

Selaković, M., Marinković, V., & Janičić, P. (2019). New dynamics in dynamic geometry: Dragging constructed points. Journal of Symbolic Computation, 97, 3-15. https://doi.org/10.1016/j.jsc.2018.12.002.

Sinclair, N. (2020). On Teaching and Learning Mathematics–Technologies. In STEM Teachers and Teaching in the Digital Era (pp. 91–107). https://doi.org/10.1007/978-3-030-29396-3_6

Stacey, K., & Wiliam, D. (2012). Technology and assessment in mathematics. In Third international handbook of mathematics education (pp. 721–751). https://doi.org/10.1007/978-1-4614-4684-2

Tang, Y., & Hew, K. F. (2017). Is mobile instant messaging (MIM) useful in education? Examining its technological, pedagogical, and social affordances. Educational Research Review, 21, 85-104. https://doi.org/10.1016/j.edurev.2017.05.001

Tossell, C. C., Kortum, P., Shepard, C., Rahmati, A., & Zhong, L. (2015). You can lead a horse to water but you cannot make him learn: Smartphone use in higher education. British Journal of Educational Technology, 46(4), 713–724. https://doi.org/10.1111/bjet.12176

Wassie, Y. A., & Zergaw, G. A. (2019). Some of the Potential Affordances, Challenges and Limitations of Using GeoGebra in Mathematics Education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), 1-11. https://doi.org/10.29333/ejmste/108436.

Willemse, J. J., Jooste, K., & Bozalek, V. (2019). Experiences of undergraduate nursing students on an authentic mobile learning enactment at a higher education institution in South Africa. Nurse Education Today, 74, 69–75. https://doi.org/10.1016/j.nedt.2018.11.021

Wong, K., Wang, F. L., Ng, K. K., & Kwan, R. (2015). Investigating acceptance towards mobile learning in higher education students. In K. C. Li, T.-L. Wong, S. K. S. Cheung, J. Lam, & K. K. Ng (Eds.), Technology in education. Transforming educational practices with technology (pp. 9–19). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi:10.1007/978-3-662-46158-7

Yerushalmy, M., & Houde, R. A. (1986). The geometric supposer: Promoting thinking and learning. The Mathematics Teacher, 79(6), 418-422. https://www.jstor.org/stable/27964981

Cómo citar
Ballesteros-Ballesteros, V. A., Rodríguez-Cardoso, Óscar I., Lozano-Forero, S., & Nisperuza-Toledo, J. L. (2020). El Aprendizaje Móvil en Educación Superior: Una Experiencia desde la Formación de Ingenieros. Revista Científica, 2(38). https://doi.org/10.14483/23448350.15214
Publicado: 2020-05-10
Sección
Educación científica y tecnológica