Validación de un protocolo fotográfico para la digitalización de muestras de herbario de especies tropicales

Validation of a photographic protocol for digitalization of herbarium samples of tropical species

  • Juan Carlos Valverde-Otárola Instituto Tecnológico de Costa Rica, Laboratorio de ecofisiología forestal y aplicaciones Ecosistémicas (ECOPLANT)
  • Ruperto Quesada Escuela de Ingeniería Forestal, Tecnológico de Costa Rica
  • Casia Soto Escuela de Ingeniería Forestal, Tecnológico de Costa Rica
  • Dagoberto Arias Instituto Tecnológico de Costa Rica, Laboratorio de ecofisiología forestal y aplicaciones Ecosistémicas (ECOPLANT) https://orcid.org/0000-0002-3056-9172
Palabras clave: objective aperture, CIELab, dendrology, tree species, ISO, shutter speed (en_US)
Palabras clave: apertura de objetivo, CIELab, dendrología, especies arbóreas, ISO, velocidad de obturación (es_ES)

Resumen (es_ES)

El estudio se validó de un protocolo fotográfico para la digitalización de muestras de herbario a partir de análisis de colorimetría digital. Para lo cual se utilizaron diez especies arbóreas en condición de herbario y se evaluó cinto tipos de velocidad de obturación, apertura de objetivo e ISO con fin identificar mejor ajuste y luego identificar el mejor protocolo fotográfico a partir de las variables L*, a *, b*, diferencial de color (ΔE*) y chroma (ΔC*). Los resultados mostraron que las velocidades de obturación de 1/3”, 1/5” y 1” mostraron ΔE* inferiores a 5, considerados como visibles, la a apertura de objetivo f/ 5.6 y f/7.1 mostraron valores ΔE* menores a 5,5 siendo mejor se adaptaron, mientras en ISO, los valores 100, 200 y 320 presentaron valores ΔE* visibles y menores a 5,3. En cuanto la determinación del mejor protocolo para las 10 especies fue CP1 con una velocidad de 1/3”, con apertura de f/5.5 e ISO 100 que presentó un ΔE* promedio de 4,1 considerado como visible y significativamente menor al resto de los tratamientos que variaron de 5,1 a 29,8, siendo cambios de visibles a totales de color y evidenciando con acumulaciones de color de 6 a 12 (ΔC*). Finalmente, IRF mostró los usuarios percibieron que CP1 mostró mejor ajuste al material físico (0,95) con respeto a los demás protocolos (promedio 0,71).

Resumen (en_US)

The study was validated of a photographic protocol for the digitalization of herbarium samples from digital colorimetry analysis. For which ten tree species were used in herbarium condition and belt types of shutter speed, objective aperture and ISO were evaluated in order to identify better fit and then identify the best photographic protocol from the variables L *, a *, b *, color differential (ΔE *) and chroma (ΔC *). The results showed that the shutter speeds of 1/3 ”, 1/5” and 1 ”showed ΔE * less than 5, considered as visible, the aperture of objective f / 5.6 and f / 7.1 showed ΔE * values ​​less than 5 , 5 being better adapted, while in ISO, values ​​100, 200 and 320 showed visible ΔE * values ​​and less than 5.3. As soon as the determination of the best protocol for the 10 species was CP1 with a speed of 1/3 ”, with an aperture of f / 5.5 and ISO 100 that presented an average ΔE * of 4.1 considered as visible and significantly lower than the rest of treatments that varied from 5.1 to 29.8, being changes from visible to total color and evidencing with color accumulations of 6 to 12 (ΔC *). Finally, IRF showed the users perceived that CP1 showed a better fit to the physical material (0.95) with respect to the other protocols (average 0.71).

Descargas

La descarga de datos todavía no está disponible.

Referencias

ASTM. (2013). Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. West Conshohocken, PA: ASTM International.

Barber, A., Lafferty, D., and Landrum, L. (2013). The SALIX Method: A semi-automated workflow for herbarium specimen digitization. Taxonomy, 62, 581-590. https://doi.org/10.12705/623.16

Blagoderov, V., Kitching, L., Livermore, L., Simonsen, T., and Smith, V. (2012). No specimen left behind: industrial scale digitization of natural history collections. ZooKeys, 209: 133-146. https://doi.org/10.3897/zookeys.209.3178

Cui, W., Kamdem, P., and Rypstra, T. (2004). Diffuse reflectance infrared Fourier. Wood and Fiber Science, 36, 291-301.

Drinkwater, R., Cubey, R., and Haston, E. (2014). The use of Optical Character Recognition (OCR) in the digitisation of herbarium specimen labels. PhytoKeys, 38, 15-30. https://doi.org/10.3897/phytokeys.38.7168

Haston, E., Cubey, R., Pullan, M., Atkins, H., and Harris, D. (2012). Developing integrated workflows for the digitisation of herbarium specimens using a modular and scalable approach. ZooKeys, 209, 93-102. https://doi.org/10.3897/zookeys.209.3121

Hernández, H., and Navarro, M. (2007). A new method to estimate areas of occupancy using herbarium data. Biodiversity and Conservation, 16, 2457-2470. https://doi.org/10.1007/s10531-006-9134-6

Hutchens, C. (2011). A Look into the Rocky Mountain Herbarium Library Collection and Digital Projects. Serials Review, 37, 35-37. https://doi.org/10.1080/00987913.2011.10765343

Kao, D. H., Djendoel Soejarto, D., Kinghornc, D., and Oberlies, D. (2018). Non-destructive chemical analysis of a Garcinia mangostana L. (Mangosteen) herbarium voucher specimen. Phytochemistry Letters, 28, 124-129. https://doi.org/10.1016/j.phytol.2018.10.001

Kovtonyuk, N. H., and Gatilova, E. (2017). Digital Herbarium Collections of the Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia. Information Technologies in the Research of Biodiversity, 77, 22-28. https://doi.org/10.1007/978-3-030-11720-7_4

Lang, M., Nilsona, T., Kuuska, A., Piseka, J., Korhonenc, L., and Uri, V. (2017). Digital photography for tracking the phenology of an evergreen coniferstand. Agricultural and Forest Meteorology, 246: 15-27. https://doi.org/10.1016/j.agrformet.2017.05.021

Magdalena, U., Estevão Silvaa, L., Oliveira Limaa, R., Belon, R., Ribeiro, F., Oliveiraa, F., . . . Campostrini, R. (2018). A new methodology for the retrieval and evaluation of geographiccoordinates within databases of scientific plant collections. Applied Geography, 96, 11-15. https://doi.org/10.1016/j.apgeog.2018.05.002

Martin, M., Quiroz-Claros, E., Brushb, G., and Zimmer, E. (2018). Herbarium collection-based phylogenetics of the ragweeds (Ambrosia,Asteraceae). Molecular Phylogenetics and Evolution, 120, 335-341. https://doi.org/10.1016/j.ympev.2017.12.023

Park, P. (2012). Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery. International Journal of Biometeorology, 56(6), 1179-1182. https://doi.org/10.1007/s00484-012-0521-2

Riera, R., Sangil, C., and Sansón, M. (2015). Long-term herbarium data reveal the decline of a temperate-wateralgae at its southern range. Estuarine, Coastal and Shelf Science, 165, 159-165. https://doi.org/10.1016/j.ecss.2015.05.008

Rivers, C., Taylor, L., Brummitt, N., Meagher, T., Roberts, D., Eimear, E., and Lughadh, N. (2011). How many herbarium specimens are needed to detect threatened species? Biological Conservation, 144: 2541-2547. https://doi.org/10.1016/j.biocon.2011.07.014

Shotbolta, L., Bükerb, P., and Ashmore, M. (2007). Reconstructing temporal trends in heavy metal deposition: Assessing the value of herbarium moss samples. Environmental Pollution, 147, 120-130. https://doi.org/10.1016/j.envpol.2006.08.031

Singh, S., and Sharma, K. (2009). Indian Virtual Herbarium Project: Implementing an institutional knowledge repository as a digital archive - Design, development, solution architecture and implementation. Journal of Digital Asset Management, 5, 55-74.

https://doi.org/10.1057/dam.2008.56

Souza, M., and Hawkings, J. (2017). Comparison of Herbarium Label Data and Published MedicinalUse: Herbaria as an Underutilized Source of Ethnobotanical Information. Economic Botany, 1-12. https://doi.org/10.1007/s12231-017-9367-1

Thiers, b., Tulig, M., and Watson, K. (2016). Digitization of The New York Botanical Garden Herbarium. Brittonia, 68, 324-333. https://doi.org/10.1007/s12228-016-9423-7

Unger, J., Merhof, D., and Renner, S. (2016). Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evolutionary Biology, 16, 248-255. https://doi.org/10.1186/s12862-016-0827-5

van der Ent, A., Ocenara, A., Tisserand, R., Sugau, J., Echevarria, G., and Erskine, P. (2019). Herbarium X-rayfluorescence screening for nickel, cobalt and manganesehyperaccumulator plants in theflora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 202, 49-58. https://doi.org/10.1016/j.gexplo.2019.03.013

Vicari, B., Pisek, J., and Disney, M. (2019). New estimates of leaf angle distribution from terrestrial LiDAR: Comparisonwith measured and modelled estimates from nine broadleaf tree species. Agricultural and Forest Meteorology, 264, 322-333. https://doi.org/10.1016/j.agrformet.2018.10.021

Willis, ,., Ellwood, E., Primack, R., Davis, C., Pearson, K., Gallinat, A., . . . Soltis, P. (2017). Old Plants, New Tricks: Phenological Research Using Herbarium Specimens. Trends in Ecology and Evolution, 32, 531-546. https://doi.org/10.1016/j.tree.2017.03.015

Wu, S., and Tan, B. (2003). Valuable and Noteworthy Chinese Fern Specimens Preserved at the Herbarium of Singapore Botanic Gardens (Sing). Pteridology in the New Millennium, 144-159. https://doi.org/10.1007/978-94-017-2811-9_12

Cómo citar
Valverde-Otárola, J. C., Quesada, R., Soto, C., & Arias, D. (2020). Validación de un protocolo fotográfico para la digitalización de muestras de herbario de especies tropicales . Revista Científica, 38(2), 147-159. https://doi.org/10.14483/23448350.15362
Publicado: 2020-05-02
Sección
Ciencia e ingeniería