DOI:

https://doi.org/10.14483/23448350.19068

Publicado:

2023-01-02

Número:

Vol. 46 Núm. 1 (2023): Enero-Abril 2023

Sección:

Ingeniería y Tecnología

Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings

Evaluación de estrategias basadas en Wavelet-ICA e ICLabel para la corrección de artefactos sobre registros EEG

Autores/as

Palabras clave:

Artifacts, Alzheimer, alpha, electroencephalography, effect size, E280A, pipelines, precuneus, preprocessing, wICA (en).

Palabras clave:

Artefactos, Alzheimer, Alfa, electroencefalografía, E280A, precuña, preprocesamiento, tamaño del efecto, wICA (es).

Descargas

Resumen (en)

In quantitative electroencephalography, it is of vital importance to eliminate non-neural components, as these can lead to an erroneous analysis of the acquired signals, limiting their use in diagnosis and other clinical applications. In light of this drawback, preprocessing pipelines based on the joint use of the Wavelet Transform and the Independent Component Analysis technique (wICA) were proposed in the 2000s. Recently, with the advent of data-driven methods, deep learning models were developed for the automatic labeling of independent components, which constitutes an opportunity for the optimization of ICA-based techniques. In this paper, ICLabel, one of these deep learning models, was added to the wICA methodology in order to explore its improvement. To assess the usefulness of this approach, it was compared to different pipelines which feature the use of wICA and ICLabel independently and a lack thereof. The impact of each pipeline was measured by its capacity to highlight known statistical differences between asymptomatic carriers of the PSEN-1 E280A mutation and a healthy control group. Specifically, the between-group effect size and the P-values were calculated to compare the pipelines. The results show that using ICLabel for artifact removal can improve the effect size (ES) and that, by leveraging it with wICA, an artifact smoothing approach that is less prone to the loss of neural information can be built.

Resumen (es)

En la electroencefalografía cuantitativa es de vital importancia la eliminación de componentes no neuronales, ya que estos pueden conducir a un análisis erróneo de las señales adquiridas, limitando su uso al diagnóstico y otras aplicaciones clínicas. Dado este inconveniente, en la década de 2000 se propusieron flujos de preprocesamiento basados ​​en el uso conjunto de la Transformada Wavelet y la técnica de Análisis de Componentes Independientes (wICA). Recientemente, con la llegada de los métodos basados en datos, se desarrollaron modelos de aprendizaje profundo para el etiquetado automático de componentes independientes, lo que generó una oportunidad para la optimización de las técnicas basadas en ICA. En este estudio, se añadió ICLabel, uno de estos modelos de aprendizaje profundo, a la metodología de wICA para explorar su mejora. Para evaluar la utilidad de este enfoque, se comparó con diferentes flujos que muestran el uso de wICA e ICLabel de forma independiente y en su ausencia. El impacto de cada flujo se midió mediante su capacidad para resaltar diferencias estadísticas conocidas entre los portadores asintomáticos de la mutación PSEN-1 E280A y un grupo de control sano. Se calcularon específicamente el tamaño del efecto entre grupos y los valores P para comparar los flujos. Los resultados muestran que el uso de ICLabel para la eliminación de artefactos puede mejorar el tamaño del efecto (ES) y que, al aprovecharlo con wICA, se puede construir un enfoque de suavizado de artefactos menos susceptible a la pérdida de información neuronal.

Referencias

Babiloni, C., Barry, R. J., Başar, E., Blinowska, K. J., Cichocki, A., Drinkenburg, W. H. I. M., Klimesch, W., Knight, R. T., Lopes da Silva, F., Nunez, P., Oostenveld, R., Jeong, J., Pascual-Marqui, R., Valdes-Sosa, P., Hallett, M. (2020). International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clinical Neurophysiology, 131(1), 285-307. https://doi.org/10.1016/J.CLINPH.2019.06.234

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., Robbins, K. A. (2015). The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 1-19. https://doi.org/10.3389/FNINF.2015.00016/BIBTEX

Castellanos, N. P., Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158(2), 300-312. https://doi.org/10.1016/J.JNEUMETH.2006.05.033

Chen, Z., Lu, G., Xie, Z., Shang, W. (2020). A unified framework and method for EEG-Based early epileptic seizure detection and epilepsy diagnosis. IEEE Access, 8, 20080-20092. https://doi.org/10.1109/ACCESS.2020.2969055

Cohen, B. A., Sances, A. (1977). Stationarity of the human electroencephalogram. Medical & Biological Engineering & Computing, 15(5), 513-518. https://doi.org/10.1007/BF02442278

Cohen, J. (1988). Statistical power anaylsis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates

Donoho, D. L., Johnstone, I. M. (1992). Ideal spatial adaptation by wavelet shrinkage. Department of Statistics, Stanford University

Duque-Grajales, J. E., Tobón, C., Aponte-Restrepo, C. P., Ochoa-Gómez, J. F., Muñoz-Zapata, C., Hernández-Valdivieso, A. M., Quiroz-Zapata, Y. T., Lopera, F. (2014). Quantitative EEG analysis disease during resting and memory task in carriers and non-carriers of PS-1 E280A mutation of familial Alzheimer's. Revista CES Medicina, 28(2), 165-175

Fabietti, M., Mahmud, M., Lotfi, A., Averna, A., Guggenmos, D., Nudo, R., Chiappalone, M. (2020). Artifact detection in chronically recorded local field potentials using long-short term memory neural network. En 14th IEEE International Conference on Application of Information and Communication Technologies, Tashkent, Uzbekistan. https://doi.org/10.1109/AICT50176.2020.9368638

Glerean, E. (2015). Bramila t-test. https://version.aalto.fi/gitlab/BML/bramila/-/blob/master/README.md

He, B., Sohrabpour, A., Brown, E., Liu, Z. (2018). Electrophysiological source imaging: A noninvasive window to brain dynamics. Annual Review of Biomedical Engineering, 20, 171-196. https://doi.org/10.1146/annurev-bioeng-062117-120853

Iversen, J. R., Makeig, S. (2019). MEG/EEG data analysis using EEGLAB. In S. Supek & C. Aine (Eds.), Magnetoencephalography: From Signals to Dynamic Cortical Networks (2nd ed., pp. 391-406). Springer. https://doi.org/10.1007/978-3-030-00087-5_8

Jadah, R. H. S. (2020). Basic electroencephalogram and its common clinical applications in children. In H. Nakano (Ed.), Electroencephalography - From Basic Research to Clinical Applications. IntechOpen. https://doi.org/10.5772/INTECHOPEN.94247

Jiang, X., Bian, G. Bin, Tian, Z. (2019). Removal of artifacts from EEG signals: A review. Sensors, 19(5), e987. https://doi.org/10.3390/S19050987

Kaur, R., Korolkov, M., Hernández, M. E., Sowers, R. (2020). Automatic identification of brain independent components in electroencephalography data collected while standing in a virtually immersive environment - A Deep Learning-Based approach. En 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada. https://doi.org/10.1109/EMBC44109.2020.9175741

Kim, J., Cho, Y. H., Sung, K., Park, T. K., Lee, G. Y., Lee, J. M., Song, Y. Bin, Hahn, J.-Y., Choi, J.-H., Choi, S.-H., Gwon, H.-C., Yang, J. H. (2019). Impact of cannula size on clinical outcomes in peripheral venoarterial extracorporeal membrane oxygenation. ASAIO Journal, 65(6), 573-579. https://doi.org/10.1097/MAT.0000000000000858

Klug, M., Gramann, K. (2020). Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. bioRxiv. https://doi.org/10.1101/2020.06.02.129213

Lee, S. S., Lee, K., Kang, G. (2020). EEG artifact removal by Bayesian Deep Learning ICA. En 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada. https://doi.org/10.1109/EMBC44109.2020.9175785

Lema-Condo, E. L., Bueno-Palomeque, F. L., Castro-Villalobos, S. E., Ordóñez-Morales, E. F., Serpa-Andrade, L. J. (2017). Comparison of wavelet transform symlets (2-10) and daubechies (2-10) for an electroencephalographic signal analysis. En IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru. https://doi.org/10.1109/INTERCON.2017.8079702

Maestú, F., Cuesta, P., Hasan, O., Fernandéz, A., Funke, M., Schulz, P. E. (2019). The importance of the validation of M/EEG with current biomarkers in Alzheimer’s disease. Frontiers in Human Neuroscience, 13, e17. https://doi.org/10.3389/fnhum.2019.00017

Mamun, M., Al-Kadi, M., Marufuzzaman, M. (2013). Effectiveness of wavelet denoising on electroencephalogram signals. Journal of Applied Research and Technology, 11, e339. https://doi.org/10.1016/S1665-6423(13)71524-4

Monachino, A. D., López, K. L., Pierce, L. J. B., Gabard-Durnam. (n.d.). The HAPPE plus Event-Related (HAPPE+ER) software: A standardized processing pipeline for event-related potential analyses. bioRxiv. https://doi.org/10.1101/2021.07.02.450946

Ochoa, J. F., Alonso, J. F., Duque, J. E., Tobón, C. A., Baena, A., Lopera, F., Mañanas, M. A., Hernández, A. M. (2017a). Precuneus failures in subjects of the PSEN1 E280A family at risk of developing Alzheimer’s disease detected using quantitative electroencephalography. Journal of Alzheimer’s Disease, 58(4), 1229-1244. https://doi.org/10.3233/JAD-161291

Ochoa, J. F., Alonso, J. F., Duque, J. E., Tobón, C. A., Mañanas, M. A., Lopera, F., Hernández, A. M. (2017). Successful object encoding induces increased directed connectivity in presymptomatic early-onset Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(3), 1195-1205. https://doi.org/10.3233/JAD-160803

Paradeshi, K. P., Kolekar, U. D. (2017). Removing jaw clench, teeth squeeze and forehead movement EMG artifacts from EEG signal using dynamic size segmentation and multilevel decomposed wavelet with adaptive thresholding. Indian Journal of Science and Technology, 10(29), 1-7. https://doi.org/10.17485/IJST/2017/V10I29/115354

Pedroni, A., Bahreini, A., Langer, N. (2019). Automagic: Standardized preprocessing of big EEG data. NeuroImage, 200, 460-473. https://doi.org/10.1016/j.neuroimage.2019.06.046

Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage, 198, 181-197. https://doi.org/10.1016/j.neuroimage.2019.05.026

Salis, C. I., Malissovas, A. E., Bizopoulos, P. A., Tzallas, A. T., Angelidis, P. A., Tsalikakis, D. G. (2013). Denoising simulated EEG signals: A comparative study of EMD, wavelet transform and Kalman filter. En 13th IEEE International Conference on BioInformatics and BioEngineering, Chania, Greece. https://doi.org/10.1109/BIBE.2013.6701613

Sintra, T. (1992). Independent component analysis, A new concept. http://mlsp.cs.cmu.edu/courses/fall2014/lectures/extra/ICA.pdf

Suárez-Revelo, J., Ochoa-Gómez, J., Duque-Grajales, J. (2016). Improving test-retest reliability of quantitative electroencephalography using different preprocessing approaches. En 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA. https://doi.org/10.1109/EMBC.2016.7590861

Swarnkar, R., Miyapuram, K. P. (2020). Temporal EEG neural activity predicts visuo-spatial motor sequence learning. Communications in Computer and Information Science, 1333, 204-211. https://doi.org/10.1007/978-3-030-63823-8_25

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-1096. https://doi.org/10.1109/PROC.1982.12433

Vajravelu, A., Abdul Jamil, M. M., Wan Zaki, W. S, Govindassamy, M. (2021). Survey and analysis of preprocessing of EEG signal. https://www.lens.org/lens/scholar/article/036-198-693-947-283/main

Wessel, J. R. (2018). Testing multiple psychological processes for common neural mechanisms using EEG and Independent Component Analysis. Brain Topography, 31(1), 90-100. https://doi.org/10.1007/S10548-016-0483-5/tables/1

Winkler, I., Debener, S., Muller, K. R., Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. En 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy. https://doi.org/10.1109/EMBC.2015.7319296

Cómo citar

APA

Zapata-Saldarriaga, L.-M., Vargas-Serna, A.-D., Gil-Gutiérrez, J., Mantilla-Ramos, Y.-J., y Ochoa-Gómez, J.-F. (2023). Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings. Revista Científica, 46(1), 61–76. https://doi.org/10.14483/23448350.19068

ACM

[1]
Zapata-Saldarriaga, L.-M., Vargas-Serna, A.-D., Gil-Gutiérrez, J., Mantilla-Ramos, Y.-J. y Ochoa-Gómez, J.-F. 2023. Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings. Revista Científica. 46, 1 (ene. 2023), 61–76. DOI:https://doi.org/10.14483/23448350.19068.

ACS

(1)
Zapata-Saldarriaga, L.-M.; Vargas-Serna, A.-D.; Gil-Gutiérrez, J.; Mantilla-Ramos, Y.-J.; Ochoa-Gómez, J.-F. Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings. Rev. Cient. 2023, 46, 61-76.

ABNT

ZAPATA-SALDARRIAGA, L.-M.; VARGAS-SERNA, A.-D.; GIL-GUTIÉRREZ, J.; MANTILLA-RAMOS, Y.-J.; OCHOA-GÓMEZ, J.-F. Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings. Revista Científica, [S. l.], v. 46, n. 1, p. 61–76, 2023. DOI: 10.14483/23448350.19068. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/19068. Acesso em: 31 ene. 2023.

Chicago

Zapata-Saldarriaga, Luisa-María, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, y John-Fredy Ochoa-Gómez. 2023. «Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings». Revista Científica 46 (1):61-76. https://doi.org/10.14483/23448350.19068.

Harvard

Zapata-Saldarriaga, L.-M., Vargas-Serna, A.-D., Gil-Gutiérrez, J., Mantilla-Ramos, Y.-J. y Ochoa-Gómez, J.-F. (2023) «Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings», Revista Científica, 46(1), pp. 61–76. doi: 10.14483/23448350.19068.

IEEE

[1]
L.-M. Zapata-Saldarriaga, A.-D. Vargas-Serna, J. Gil-Gutiérrez, Y.-J. Mantilla-Ramos, y J.-F. Ochoa-Gómez, «Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings», Rev. Cient., vol. 46, n.º 1, pp. 61–76, ene. 2023.

MLA

Zapata-Saldarriaga, L.-M., A.-D. Vargas-Serna, J. Gil-Gutiérrez, Y.-J. Mantilla-Ramos, y J.-F. Ochoa-Gómez. «Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings». Revista Científica, vol. 46, n.º 1, enero de 2023, pp. 61-76, doi:10.14483/23448350.19068.

Turabian

Zapata-Saldarriaga, Luisa-María, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, y John-Fredy Ochoa-Gómez. «Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings». Revista Científica 46, no. 1 (enero 2, 2023): 61–76. Accedido enero 31, 2023. https://revistas.udistrital.edu.co/index.php/revcie/article/view/19068.

Vancouver

1.
Zapata-Saldarriaga L-M, Vargas-Serna A-D, Gil-Gutiérrez J, Mantilla-Ramos Y-J, Ochoa-Gómez J-F. Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings. Rev. Cient. [Internet]. 2 de enero de 2023 [citado 31 de enero de 2023];46(1):61-76. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/19068

Descargar cita

Visitas

10

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.