DOI:
https://doi.org/10.14483/23448350.22622Published:
12/11/2024Issue:
Vol. 51 No. 3 (2024): September-December 2024 (Continuos Publication)Section:
Research ArticlesIndicador de reputación para garantizar la seguridad de la interacción semántica entre objetos inteligentes del IoT mediante DAG y criptografía AES
Reputation Indicator for Security in Semantic Interaction Environments of IoT Smart Objects Using DAG and AES Cryptography
Reputation Indicator for Security in Semantic Interaction Environments of Smart Objects
Keywords:
reputation indicator, DAG, AES cryptography, reliability, IoT (en).Keywords:
indicador de reputación, DAG, criptografía AES, confiabilidad, IoT (es).Downloads
Abstract (es)
La seguridad en entornos de interacción semántica de objetos inteligentes es un tema de investigación de creciente relevancia, dado que este tipo de redes puede verse comprometido por nodos maliciosos o por la pérdida de confiabilidad de determinados nodos debido a diversas razones. En los últimos años, las investigaciones han avanzado en el desarrollo de modelos de reputación que permitan a un nodo IoT evaluar la confiabilidad de otros nodos basándose en la información proporcionada por la propia red. Esta investigación propone un modelo de reputación para objetos inteligentes en la IoT, fundamentado en dos tecnologías prometedoras: el uso de grafos acíclicos dirigidos (DAG) y la criptografía AES. Estas tecnologías se integran con el objetivo de incrementar la seguridad de la información compartida sin comprometer la escalabilidad en entornos de interacción semántica cada vez más complejos. Los resultados preliminares sugieren que la solución propuesta incrementa el nivel de seguridad en la red, con un impacto moderado en su rendimiento.
Abstract (en)
Security in semantic interaction environments of smart objects is a growing area of research, as these types of networks can be compromised by malicious nodes or by the loss of reliability of certain nodes due to various reasons. In recent years, research has progressed in the development of reputation models that allow an IoT node to evaluate the reliability of other nodes based on information provided by the network itself. This research proposes a reputation model for IoT smart objects, based on two promising technologies: the use of Directed Acyclic Graphs (DAG) and AES cryptography. These technologies are integrated with the goal of enhancing the security of shared information without compromising scalability in increasingly complex semantic interaction environments. Preliminary results suggest that the proposed solution increases the security level of the network, with a moderate impact on its performance.
References
Alshehri, S., & Bamasag, O. (2022). AAC-IoT: Attribute access control scheme for IoT using lightweight cryptography and Hyperledger Fabric blockchain. Applied Sciences (Switzerland), 12(16), 8111. https://doi.org/10.3390/app12168111
Azad, M. A., Bag, S., & Hao, F. (2017). M2M-REP: Reputation of machines in the Internet of Things [Artículo de conferencia]. 12th International Conference on Availability, Reliability and Security. https://doi.org/10.1016/j.cose.2018.07.014
Battah, A., Iraqi, Y., & Damiani, E. (2021). Blockchain-based reputation systems: Implementation challenges and mitigation. Electronics (Switzerland), 10(3), 289. https://doi.org/10.3390/electronics10030289
Bernal Bernabe, J., Hernandez Ramos, J. L., & Skarmeta Gomez, A. F. (2016). TACIoT: Multidimensional trust-aware access control system for the Internet of Things. Soft Computing, 20(5), 1763-1779. https://doi.org/10.1007/s00500-015-1705-6
Bica, I., Chifor, B.-C., Arseni, Ș.-C., & Matei, I. (2020). Reputation-based security framework for Internet of Things. En E. Simion & R. Géraud-Stewart (Eds.), Innovative Security Solutions for Information Technology and Communications (pp. 213-226). Springer International Publishing. https://doi.org/10.1007/978-3-030-41025-4_14
Bordel, B., Alcarria, R., Martín De Andrés, D., & You, I. (2018). Securing Internet-of-Things systems through implicit and explicit reputation models. IEEE Access, 6, 47472-47488. https://doi.org/10.1109/ACCESS.2018.2866185
Cai, T., Li, X., Chen, W., Wei, Z., & Ye, Z. (2024). Blockchain-based federated learning for IoT sharing: Incentive scheme with reputation mechanism. En J. Chen, B. Wen & T. Chen (Eds.), Blockchain and Trustworthy Systems. BlockSys 2023. Communications in Computer and Information Science (vol. 1896, pp. 270-284). Springer.https://doi.org/10.1007/978-981-99-8101-4_19
Chen, D., Chang, G., Sun, D., Li, J., Jia, J., & Wang, X. (2011). TRM-IoT: A trust management model based on fuzzy reputation for the Internet of Things. Computer Science and Information Systems, 8(4), 1207-1228. https://doi.org/10.2298/csis110303056c
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
Guerrero-Narváez, S., Niño-Zambrano, M. ángel, Riobamba-Calvache, D. J., & Ramírez-González, G. A. (2018). Test bed of semantic interaction of smart objects in the web of things. Future Internet, 10(5), 42. https://doi.org/10.3390/fi10050042
Gurajena, C., Sibanda, K., & Chindenga, E. (2020). Security in the Internet of Things: Trust and reputation evaluation model. Indian Journal of Computer Science and Engineering, 11(5), 522-531. https://doi.org/10.21817/indjcse/2020/v11i5/201105263
Hellani, H., Sliman, L., Samhat, A. E., & Exposito, E. (2021a). Computing resource allocation scheme for DAG-based IOTA nodes. Sensors, 21(14), 4703. https://doi.org/10.3390/s21144703
Hellani, H., Sliman, L., Samhat, A. E., & Exposito, E. (2021b). Tangle the blockchain: Towards connecting blockchain and DAG. En IEEE (Ed.), Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE (vol. 2021-October, pp. 63-68). IEEE Computer Society. https://doi.org/10.1109/WETICE53228.2021.00023
Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022). Resource allocation and task scheduling in fog computing and Internet of Everything environments: A taxonomy, review, and future directions. ACM Computing Surveys (CSUR), 54, 1-38. https://doi.org/10.1145/3513002
Javanmardi, S., Shojafar, M., Shariatmadari, S., & Ahrabi, S. S. (2014). FR Trust: A fuzzy reputation-based model for trust management in semantic P2P grids. International Journal of Grid and Utility Computing, 6(1), 57-66. https://doi.org/10.1504/IJGUC.2015.066397
Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for online service provision. Decision Support Systems, 43(2), 618-644. https://doi.org/10.1016/j.dss.2005.05.019
Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The Eigentrust algorithm for reputation management in P2P networks [Artículo de conferencia]. 12th International Conference on World Wide Web, WWW ’03. https://doi.org/10.1145/775152.775242
Li, J., Dai, M., Lu, Y., & Yang, S. (2024). Trusted reputation system for heterogeneous network resource sharing based on blockchain in IoT. Wireless Networks, 31, 1421-1433. https://doi.org/10.1007/s11276-024-03825-y
Liang, J., Li, L., & Zeng, D. (2019). Evolutionary dynamics of cryptocurrency transaction networks: An empirical study. PLoS ONE, 13(8), e0202202. https://doi.org/10.1371/journal.pone.0202202
Mazzocca, C., Romandini, N., Montanari, R., & Bellavista, P. (2024). Enabling federated learning at the edge through the IOTA Tangle. Future Generation Computer Systems, 152, 17-29. https://doi.org/10.1016/j.future.2023.10.014
Mhetre, N. A., Deshpande, A. V., & Mahalle, P. N. (2016). Trust management model based on fuzzy approach for ubiquitous computing. International Journal of Ambient Computing and Intelligence, 7(2), 33-46. https://doi.org/10.4018/IJACI.2016070102
Patel, A., & Jinwala, D. (2022). A reputation-based RPL protocol to detect selective forwarding attack in Internet of Things. International Journal of Communication Systems, 35(1), e5007. https://doi.org/https://doi.org/10.1002/dac.5007
Rana, M., Mamun, Q., & Islam, R. (2022). Lightweight cryptography in IoT networks: A survey. Future Generation Computer Systems, 129, 77-89. https://doi.org/10.1016/j.future.2021.11.011
Resnick, P., Zeckhauser, R., Friedman, E., & Kuwabara, K. (2001). Reputation systems. Communications of the ACM, 43(12), 45-48. https://doi.org/10.1145/355112.355122
Song, S., Hwang, K., Zhou, R., & Kwok, Y. K. (2005). Trusted P2P transactions with fuzzy reputation aggregation. IEEE Internet Computing, 9(6), 24-34. https://doi.org/10.1109/MIC.2005.136
Tariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research directions for the Internet of Things: A comprehensive review. Sensors, 23(8), 4117. https://doi.org/10.3390/s23084117
Wang, Y., & Vassileva, J. (2003). Trust and reputation model in peer-to-peer networks [Artículo de conferencia]. Third International Conference on Peer-to-Peer Computing (P2P2003). https://doi.org/10.1109/PTP.2003.1231515
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941-2962. https://doi.org/10.1080/00207543.2018.1444806
Yang, W., Hou, C., Zhang, Z., Wang, X., & Chen, S. (2024). Secure and efficient data sharing for IoT based on blockchain and reputation mechanism. IEEE Internet of Things Journal, 11(11), 20631–20647. https://doi.org/10.1109/JIOT.2024.3371063
Zhou, Z., Ye, F., Gao, J., Zhang, S., & Geng, X. (2024). Ensuring long-term trustworthy collaboration in IoT networks using contract theory and reputation mechanism on blockchain. IEEE Internet of Things Journal, 11(2), 2420-2437. https://doi.org/10.1109/JIOT.2023.3291826
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Carlos-Andrés Díaz-Santacruz, Miguel-Angel Niño-Zambrano, Daniel-Guillermo Zárate-Guevara, Samuel-Yesid Bulla-Ortega

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.