Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity

Detección de asbesto-cemento en imágenes hiperespectrales a partir de la aplicación de la similitud de fase de Fourier

Autores/as

Palabras clave:

hyperspectral imaging, asbestos-cement detection, remote sensing, phase similarity, fast Fourier transform (en).

Palabras clave:

imágenes hiperespectrales, detección de asbesto-cemento, sensado remoto, similitud de fase, transformada rápida de Fourier (es).

Resumen (en)

One of the challenges in the field of hyperspectral imaging is identifying methods for the effective and efficient detection of materials, given the high dimensionality of the data associated with hundreds of reflectance bands. In this regard, given the regulations on the use of asbestos in construction and the implications of this material for human health, remote sensing has become increasingly important. This paper proposes a new computational approach for the detection of asbestos-cement that uses the phase similarity between the Fourier spectral representation of the characteristic pixel and that of the other spectral signatures in the image. The CRISP-DM methodology was adapted for the development of this research. As a result, the proposed approach was implemented on a hyperspectral image of the Manga neighborhood in the city of Cartagena de Indias (Bolívar, Colombia). The percentage of asbestos detected using our method differs by 1.74% from the traditional correlation method. Likewise, the proposed approach proved to be 0.86% more efficient than the latter. Based on the results obtained, our approach is a competitive alternative, being very useful in scenarios involving large-coverage images and requiring optimized processing time. Given the use of open-source technologies, this approach can be easily extrapolated in the academic and business domains to detect asbestos-cement and other materials.

Resumen (es)

Uno de los desafíos en el campo de las imágenes hiperespectrales es la identificación de métodos para la detección eficaz y eficiente de materiales, en vista de la alta dimensionalidad de los datos asociados a los cientos de bandas de reflectancia. En este sentido, dada la regulación en cuanto al uso de asbesto en la construcción y las implicaciones de este material para la salud humana, ha cobrado relevancia la teledetección. En este trabajo se propone un nuevo enfoque computacional para la detección de asbesto-cemento que utiliza la similitud de fase entre la representación espectral de Fourier del pixel característico y la de las demás firmas espectrales en la imagen. Para el desarrollo de esta investigación, se adaptó la metodología CRISP-DM. A manera de resultado, se implementó el enfoque propuesto en una imagen hiperespectral del barrio Manga de la ciudad de Cartagena de Indias (Bolívar, Colombia). El porcentaje de asbesto detectado por medio de nuestro método difiere en un 1.74 % con respecto al tradicional método de correlación. Asimismo, el enfoque propuesto demostró ser 0.86% más eficiente que este último. De acuerdo con los resultados obtenidos, nuestro enfoque se constituye en una alternativa competitiva, siendo de gran utilidad en escenarios que involucren imágenes de gran cobertura y requieran optimizar el tiempo de procesamiento. Dado el uso de tecnologías de código abierto, este enfoque puede ser extrapolado fácilmente en el dominio académico y empresarial con el fin de detectar asbesto-cemento y otros materiales.

Biografía del autor/a

Manuel Alejandro Ospina-Alarcón, Universidad de Cartagena

Profesor de la Facultad de Ingeniería de la Universidad de Cartagena

Manuel Saba, Universidad de Cartagena

Profesor de la Facultad de Ingeniería de la Universidad de Cartagena

Referencias

Abasova, J., Tanuska, P., & Rydzi, S. (2021). Big data—Knowledge discovery in production industry data storages—Implementation of best practices. Applied Sciences, 11(16), 7648. https://doi.org/10.3390/app11167648

Akinlade, O., Vakaj, E., Dridi, A., Tiwari, S., & Ortiz-Rodriguez, F. (2023). Semantic segmentation of the lung to examine the effect of COVID-19 using UNET model. In M. A. Jabbar, F. Ortiz-Rodríguez, S. Tiwari, & P. Siarry (Dds.), Applied Machine Learning and Data Analytics. AMLDA 2022. (Communications in Computer and Information Science, vol. 1818, pp. 52-63). Springer. https://doi.org/10.1007/978-3-031-34222-6_5

Algranti, E., Mendonça, E. M. C., DeCapitani, E. M., Freitas, J. B. P., Silva, H. C., & Bussacos, M. A. (2001). Nonmalignant asbestos‐related diseases in Brazilian asbestos‐cement workers. American Journal of Industrial Medicine, 40(3), 240-254. https://doi.org/10.1002/ajim.1095

Asghari Beirami, B., & Mokhtarzade, M. (2020). Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 17(11), 1953-1957. https://doi.org/10.1109/LGRS.2019.2958833

Awange, J., & Kiema, J. (2019). Fundamentals of remote sensing. In J. Awannge & J. Kiema, Environmental Geoinformatics (Environmental Science and Engineering, pp. 115-123). Springer. https://doi.org/10.1007/978-3-030-03017-9_7

Baker, M. (2003). Frequency domain testing and the FFT. In M. Baker, Demystifying Mixed Signal Test Methods (pp.

115-146). Elsevier. https://doi.org/10.1016/B978-075067616-8/50005-4

Bassani, C., Cavalli, R. M., Cavalcante, F., Cuomo, V., Palombo, A., Pascucci, S., & Pignatti, S. (2007). Deterioration

status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment,

109(3), 361-378. https://doi.org/10.1016/j.rse.2007.01.014

Bonifazi, G., Capobianco, G., & Serranti, S. (2015). Hyperspectral imaging applied to the identification and classification of asbestos fibers [Conference article]. 2015 IEEE Sensors, Busan, South Korea. https://doi.org/10.1109/ICSENS.2015.7370458

Bonifazi, G., Capobianco, G., & Serranti, S. (2018). Asbestos containing materials detection and classification by the use of hyperspectral imaging. Journal of Hazardous Materials, 344, 981-993. https://doi.org/10.1016/j.jhazmat.2017.11.056

Bonifazi, G., Capobianco, G., & Serranti, S. (2019). Hyperspectral Imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste. Applied Sciences, 9(21), 4587. https://doi.org/10.3390/app9214587

Bonifazi, G., Capobianco, G., Serranti, S., Malinconico, S., & Paglietti, F. (2022). Asbestos detection in construction and demolition waste adopting different classification approaches based on short wave infrared hyperspectral imaging. Detritus, 20, 90-99. https://doi.org/10.31025/2611-4135/2022.15211

Brigham, E. O., & Yuen, C. K. (1978). The fast fourier Transform. IEEE Transactions on Systems, Man, and Cybernetics,

8(2), 146-146. https://doi.org/10.1109/TSMC.1978.4309919 Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108(1), 13-22. https://doi.org/10.1016/j.chemolab.2011.04.001

Chanchí-Golondrino, G. E., Ospina-Alarcón, M. A., & Saba, M. (2024). Fourier analysis for detecting vegetation in hyperspectral images. Ingeniería y Competitividad, 26(3), 13493. https://doi.org/10.25100/iyc.v26i3.13493

Chanchí Golondrino, G. E., Ospina Alarcón, M. A., & Saba, M. (2023). Vegetation identification in hyperspectral images using distance/correlation metrics. Atmosphere, 14(7), 1148. https://doi.org/10.3390/atmos14071148

Durán-Ávila, N. L., Cañarte-Murillo, J. R., Zambrano-Murillo, J. N., & Ayón-Lucio, C. A. (2021). Daño pulmonar causado por asbestos en trabajadores de la construcción. Cienciamatria, 7(1), 260-270. https://doi.org/10.35381/cm.v7i1.529

Enríquez Aguilera, F. J., Silva Aceves, J. M., Torres Argüelles, S. V., Martínez Gómez, E. A., & Bravo Martínez, G. (2018). Utilización de GPU-CUDA en el procesamiento digital de imágenes. Cultura Científica y Tecnológica,66, 65-79. https://doi.org/10.20983/culcyt.2018.3.9

Fang, Q. (2024). The advantages of using remote sensing technology to monitor forest fires. Applied and Computational Engineering, 60(1), 42-48. https://doi.org/10.54254/2755-2721/60/20240830

Fu, W., Ma, J., Chen, P., & Chen, F. (2020). Remote sensing satellites for Digital Earth. In H. Guo, M. F. Goodchild, & A. Annoni (Eds.), Manual of Digital Earth (pp. 55-123). Springer. https://doi.org/10.1007/978-981-32-9915-3_3

Gan, W. S. (2020). Fast Fourier transform. In W. S. Gan (Eds.), Signal Processing and Image Processing for Acoustical Imaging (pp. 17-20). Springer. https://doi.org/10.1007/978-981-10-5550-8_5

Gao, L., & Smith, R. T. (2015). Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. Journal of Biophotonics, 8(6), 441-456. https://doi.org/10.1002/jbio.201400051

Hayat Suhendar, M. T., & Widyani, Y. (2023). Machine learning application development guidelines using CRISP-DM and scrum concept [Conference article]. 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), Toba, Indonesia. https://doi.org/10.1109/ICoDSE59534.2023.10291438

Hu, Q., Wang, X., Jiang, J., Zhang, X.-P., & Ma, J. (2024). Exploring the spectral prior for hyperspectral image superresolution. IEEE Transactions on Image Processing, 33, 5260-5272. https://doi.org/10.1109/TIP.2024.3460470

Jiang, J., Ma, J., Chen, C., Wang, Z., Cai, Z., & Wang, L. (2018). SuperPCA: A Superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4581-4593. https://doi.org/10.1109/TGRS.2018.2828029

Jiang, Z., Chen, J., Chen, J., Feng, L., Jin, M., Zhong, H., Ju, L., Zhu, L., Xiao, Y., Jia, Z., Xu, C., Yu, D., Zhang, X., & Lou, J. (2022). Mortality due to respiratory system disease and lung cancer among female workers exposed to chrysotile in Eastern China: A cross-sectional study. Frontiers in Oncology, 12, 1-10. https://doi.org/10.3389/fonc.2022.928839

Jiménez-López, A. F., Jiménez-López, M., & Jiménez-López, F. R. (2015). Multispectral analysis of vegetation for remote sensing applications. ITECKNE, 12(2), 1242. https://doi.org/10.15332/iteckne.v12i2.1242

Kollar, Z., Plesznik, F., & Trumpf, S. (2018). Observer-Based Recursive Sliding Discrete Fourier Transform [Tips & Tricks]. IEEE Signal Processing Magazine, 35(6), 100-106. https://doi.org/10.1109/MSP.2018.2853196

Krówczyńska, M., Raczko, E., Staniszewska, N., & Wilk, E. (2020). Asbestos-cement roofing identification using remote sensing and convolutional neural networks (CNNs). Remote Sensing, 12(3), 408. https://doi.org/10.3390/rs12030408

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2019). Deep learning for hyperspectral image classification: An overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690-6709. https://doi.org/10.1109/TGRS.2019.2907932

Liu, G., Yang, H., Zhao, H., Zhang, Y., Zhang, S., Zhang, X., & Jin, G. (2021). Combination of structured illumination microscopy with hyperspectral imaging for cell analysis. Analytical Chemistry, 93(29), 10056-10064. https://doi.org/10.1021/acs.analchem.1c00660

Mainieri Hidalgo, J. A., Putvinsky, V., & Mainieri Breedy, G. (2009). Mesotelioma pleural en Costa Rica. Acta Médica Costarricense, 48(1), 217. https://doi.org/10.51481/amc.v48i1.217

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., Ramírez- Quintana, M. J., & Flach, P. (2021). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061. https://doi.org/10.1109/TKDE.2019.2962680

Muhammed, S., Rahul, D., & Vishnukumar, S. (2020). Hyperspectral and multispectral image fusion techniques. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 467-471. https://doi.org/10.35940/ijrte.E4904.018520

Musk, A. W., de Klerk, N., Reid, A., Hui, J., Franklin, P., & Brims, F. (2020). Asbestos-related diseases. The International Journal of Tuberculosis and Lung Disease, 24(6), 562-567. https://doi.org/10.5588/ijtld.19.0645

Nava, J., & Hernández, P. (2012). Optimization of a hybrid methodology (CRISP-DM). In C. A. O Ortiz Zezzatti, C. Chira, A. Hernández, & M. Basurto (Eds.), Logistics Management and Optimization through Hybrid Artificial Intelligence Systems (pp. 356-379). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-4666-0297-7.ch014

Navalgund, R., Jayaraman, V., & Roy, P. (2007). Remote sensing applications: An overview. Current Science, 93,1747-1766.

Ortega, S., Fabelo, H., Iakovidis, D., Koulaouzidis, A., & Callico, G. (2019). Use of hyperspectral/multispectral imaging in gastroenterology. Shedding some–different–light into the dark. Journal of Clinical Medicine, 8(1), 36. https://doi.org/10.3390/jcm8010036

Ospina, D., Villegas, V. E., Rodríguez-Leguizamón, G., & Rondón-Lagos, M. (2019). Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos. Cancer Management and Research, 11, 4997-5012. https://doi.org/10.2147/CMAR.S205723

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., & Trianni, G. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113, S110-S122. https://doi.org/10.1016/j.rse.2007.07.028

Pollard, J. M. (1971). The fast Fourier transform in a finite field. Mathematics of Computation, 25(114), 365-374. https://doi.org/10.1090/S0025-5718-1971-0301966-0

Ruiz Guzmán, E., Gallegos Rodríguez, A., Flores Garnica, J. G., & Mena Munguía, S. (2024). Aplicación de sensores remotos e inteligencia artificial en la gestión y conservación de bosques frente al cambio climático en México. E-CUCBA, 11(21), 142-149. https://doi.org/10.32870/e-cucba.vi21.332

Sabah Jaber, H. (2018). Classification of hyperspectral remote sensing for production minerals mapping using geological map and geomatics techniques. International Journal of Engineering & Technology, 7(4.20), 480-484. https://doi.org/10.14419/ijet.v7i4.20.26247

Sifnaios, S., Arvanitakis, G., Konstantinidis, F. K., Tsimiklis, G., Amditis, A., & Frangos, P. (2024). A deep learning approach for pixel-level material classification via hyperspectral imaging. https://doi.org/10.48550/arXiv.2409.13498

Taiwo, G., Vadera, S., & Alameer, A. (2025). Vision transformers for automated detection of pig interactions in groups. Smart Agricultural Technology, 10, 100774. https://doi.org/10.1016/j.atech.2025.100774

Wang, Z., Ma, Y., Zhang, Y., & Shang, J. (2022). Review of remote sensing applications in grassland monitoring. Remote Sensing, 14(12), 2903. https://doi.org/10.3390/rs14122903

Xing, Y., & Gómez, R. B. (2001). Hyperspectral image analysis using ENVI (environment for visualizing images). In W. E. Roper (Ed.), Proceedings of SPIE - The International Society for Optical Engineering (pp. 79-86). SPIE. https://doi.org/10.1117/12.428244

Zhang, X., Jiang, X., Jiang, J., Zhang, Y., Liu, X., & Cai, Z. (2022). Spectral–spatial and superpixelwise PCA for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2021.3057701

Cómo citar

APA

Chanchí Golondrino, G. E., Ospina-Alarcón, M. A., y Saba, M. (2025). Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity. Revista Científica, 52(2). https://doi.org/10.14483/23448350.23314

ACM

[1]
Chanchí Golondrino, G.E. et al. 2025. Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity. Revista Científica. 52, 2 (nov. 2025). DOI:https://doi.org/10.14483/23448350.23314.

ACS

(1)
Chanchí Golondrino, G. E.; Ospina-Alarcón, M. A.; Saba, M. Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity. Rev. Cient. 2025, 52.

ABNT

CHANCHÍ GOLONDRINO, Gabriel Elias; OSPINA-ALARCÓN, Manuel Alejandro; SABA, Manuel. Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity. Revista Científica, [S. l.], v. 52, n. 2, 2025. DOI: 10.14483/23448350.23314. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/23314. Acesso em: 30 dic. 2025.

Chicago

Chanchí Golondrino, Gabriel Elias, Manuel Alejandro Ospina-Alarcón, y Manuel Saba. 2025. «Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity». Revista Científica 52 (2). https://doi.org/10.14483/23448350.23314.

Harvard

Chanchí Golondrino, G. E., Ospina-Alarcón, M. A. y Saba, M. (2025) «Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity», Revista Científica, 52(2). doi: 10.14483/23448350.23314.

IEEE

[1]
G. E. Chanchí Golondrino, M. A. Ospina-Alarcón, y M. Saba, «Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity», Rev. Cient., vol. 52, n.º 2, nov. 2025.

MLA

Chanchí Golondrino, Gabriel Elias, et al. «Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity». Revista Científica, vol. 52, n.º 2, noviembre de 2025, doi:10.14483/23448350.23314.

Turabian

Chanchí Golondrino, Gabriel Elias, Manuel Alejandro Ospina-Alarcón, y Manuel Saba. «Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity». Revista Científica 52, no. 2 (noviembre 30, 2025). Accedido diciembre 30, 2025. https://revistas.udistrital.edu.co/index.php/revcie/article/view/23314.

Vancouver

1.
Chanchí Golondrino GE, Ospina-Alarcón MA, Saba M. Detection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity. Rev. Cient. [Internet]. 30 de noviembre de 2025 [citado 30 de diciembre de 2025];52(2). Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/23314

Descargar cita

Visitas

1

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2.4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32% con financiadores
Competing interests 
Conflicto de intereses: No
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 37%
33% aceptado
Days to publication 
267
145

Indexado: {$indexList}

Editor & editorial board
profiles
Loading...