DOI:
https://doi.org/10.14483/23448350.23314Publicado:
11/30/2025Número:
Vol. 52 Núm. 2 (2025): Mayo-Agosto 2025Sección:
ArtículosDetection of Asbestos-Cement in Hyperspectral Images Based on the Application of Fourier Phase Similarity
Detección de asbesto-cemento en imágenes hiperespectrales a partir de la aplicación de la similitud de fase de Fourier
Palabras clave:
hyperspectral imaging, asbestos-cement detection, remote sensing, phase similarity, fast Fourier transform (en).Palabras clave:
imágenes hiperespectrales, detección de asbesto-cemento, sensado remoto, similitud de fase, transformada rápida de Fourier (es).Descargas
Resumen (en)
One of the challenges in the field of hyperspectral imaging is identifying methods for the effective and efficient detection of materials, given the high dimensionality of the data associated with hundreds of reflectance bands. In this regard, given the regulations on the use of asbestos in construction and the implications of this material for human health, remote sensing has become increasingly important. This paper proposes a new computational approach for the detection of asbestos-cement that uses the phase similarity between the Fourier spectral representation of the characteristic pixel and that of the other spectral signatures in the image. The CRISP-DM methodology was adapted for the development of this research. As a result, the proposed approach was implemented on a hyperspectral image of the Manga neighborhood in the city of Cartagena de Indias (Bolívar, Colombia). The percentage of asbestos detected using our method differs by 1.74% from the traditional correlation method. Likewise, the proposed approach proved to be 0.86% more efficient than the latter. Based on the results obtained, our approach is a competitive alternative, being very useful in scenarios involving large-coverage images and requiring optimized processing time. Given the use of open-source technologies, this approach can be easily extrapolated in the academic and business domains to detect asbestos-cement and other materials.
Resumen (es)
Uno de los desafíos en el campo de las imágenes hiperespectrales es la identificación de métodos para la detección eficaz y eficiente de materiales, en vista de la alta dimensionalidad de los datos asociados a los cientos de bandas de reflectancia. En este sentido, dada la regulación en cuanto al uso de asbesto en la construcción y las implicaciones de este material para la salud humana, ha cobrado relevancia la teledetección. En este trabajo se propone un nuevo enfoque computacional para la detección de asbesto-cemento que utiliza la similitud de fase entre la representación espectral de Fourier del pixel característico y la de las demás firmas espectrales en la imagen. Para el desarrollo de esta investigación, se adaptó la metodología CRISP-DM. A manera de resultado, se implementó el enfoque propuesto en una imagen hiperespectral del barrio Manga de la ciudad de Cartagena de Indias (Bolívar, Colombia). El porcentaje de asbesto detectado por medio de nuestro método difiere en un 1.74 % con respecto al tradicional método de correlación. Asimismo, el enfoque propuesto demostró ser 0.86% más eficiente que este último. De acuerdo con los resultados obtenidos, nuestro enfoque se constituye en una alternativa competitiva, siendo de gran utilidad en escenarios que involucren imágenes de gran cobertura y requieran optimizar el tiempo de procesamiento. Dado el uso de tecnologías de código abierto, este enfoque puede ser extrapolado fácilmente en el dominio académico y empresarial con el fin de detectar asbesto-cemento y otros materiales.
Referencias
Abasova, J., Tanuska, P., & Rydzi, S. (2021). Big data—Knowledge discovery in production industry data storages—Implementation of best practices. Applied Sciences, 11(16), 7648. https://doi.org/10.3390/app11167648
Akinlade, O., Vakaj, E., Dridi, A., Tiwari, S., & Ortiz-Rodriguez, F. (2023). Semantic segmentation of the lung to examine the effect of COVID-19 using UNET model. In M. A. Jabbar, F. Ortiz-Rodríguez, S. Tiwari, & P. Siarry (Dds.), Applied Machine Learning and Data Analytics. AMLDA 2022. (Communications in Computer and Information Science, vol. 1818, pp. 52-63). Springer. https://doi.org/10.1007/978-3-031-34222-6_5
Algranti, E., Mendonça, E. M. C., DeCapitani, E. M., Freitas, J. B. P., Silva, H. C., & Bussacos, M. A. (2001). Nonmalignant asbestos‐related diseases in Brazilian asbestos‐cement workers. American Journal of Industrial Medicine, 40(3), 240-254. https://doi.org/10.1002/ajim.1095
Asghari Beirami, B., & Mokhtarzade, M. (2020). Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 17(11), 1953-1957. https://doi.org/10.1109/LGRS.2019.2958833
Awange, J., & Kiema, J. (2019). Fundamentals of remote sensing. In J. Awannge & J. Kiema, Environmental Geoinformatics (Environmental Science and Engineering, pp. 115-123). Springer. https://doi.org/10.1007/978-3-030-03017-9_7
Baker, M. (2003). Frequency domain testing and the FFT. In M. Baker, Demystifying Mixed Signal Test Methods (pp.
115-146). Elsevier. https://doi.org/10.1016/B978-075067616-8/50005-4
Bassani, C., Cavalli, R. M., Cavalcante, F., Cuomo, V., Palombo, A., Pascucci, S., & Pignatti, S. (2007). Deterioration
status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment,
109(3), 361-378. https://doi.org/10.1016/j.rse.2007.01.014
Bonifazi, G., Capobianco, G., & Serranti, S. (2015). Hyperspectral imaging applied to the identification and classification of asbestos fibers [Conference article]. 2015 IEEE Sensors, Busan, South Korea. https://doi.org/10.1109/ICSENS.2015.7370458
Bonifazi, G., Capobianco, G., & Serranti, S. (2018). Asbestos containing materials detection and classification by the use of hyperspectral imaging. Journal of Hazardous Materials, 344, 981-993. https://doi.org/10.1016/j.jhazmat.2017.11.056
Bonifazi, G., Capobianco, G., & Serranti, S. (2019). Hyperspectral Imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste. Applied Sciences, 9(21), 4587. https://doi.org/10.3390/app9214587
Bonifazi, G., Capobianco, G., Serranti, S., Malinconico, S., & Paglietti, F. (2022). Asbestos detection in construction and demolition waste adopting different classification approaches based on short wave infrared hyperspectral imaging. Detritus, 20, 90-99. https://doi.org/10.31025/2611-4135/2022.15211
Brigham, E. O., & Yuen, C. K. (1978). The fast fourier Transform. IEEE Transactions on Systems, Man, and Cybernetics,
8(2), 146-146. https://doi.org/10.1109/TSMC.1978.4309919 Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108(1), 13-22. https://doi.org/10.1016/j.chemolab.2011.04.001
Chanchí-Golondrino, G. E., Ospina-Alarcón, M. A., & Saba, M. (2024). Fourier analysis for detecting vegetation in hyperspectral images. Ingeniería y Competitividad, 26(3), 13493. https://doi.org/10.25100/iyc.v26i3.13493
Chanchí Golondrino, G. E., Ospina Alarcón, M. A., & Saba, M. (2023). Vegetation identification in hyperspectral images using distance/correlation metrics. Atmosphere, 14(7), 1148. https://doi.org/10.3390/atmos14071148
Durán-Ávila, N. L., Cañarte-Murillo, J. R., Zambrano-Murillo, J. N., & Ayón-Lucio, C. A. (2021). Daño pulmonar causado por asbestos en trabajadores de la construcción. Cienciamatria, 7(1), 260-270. https://doi.org/10.35381/cm.v7i1.529
Enríquez Aguilera, F. J., Silva Aceves, J. M., Torres Argüelles, S. V., Martínez Gómez, E. A., & Bravo Martínez, G. (2018). Utilización de GPU-CUDA en el procesamiento digital de imágenes. Cultura Científica y Tecnológica,66, 65-79. https://doi.org/10.20983/culcyt.2018.3.9
Fang, Q. (2024). The advantages of using remote sensing technology to monitor forest fires. Applied and Computational Engineering, 60(1), 42-48. https://doi.org/10.54254/2755-2721/60/20240830
Fu, W., Ma, J., Chen, P., & Chen, F. (2020). Remote sensing satellites for Digital Earth. In H. Guo, M. F. Goodchild, & A. Annoni (Eds.), Manual of Digital Earth (pp. 55-123). Springer. https://doi.org/10.1007/978-981-32-9915-3_3
Gan, W. S. (2020). Fast Fourier transform. In W. S. Gan (Eds.), Signal Processing and Image Processing for Acoustical Imaging (pp. 17-20). Springer. https://doi.org/10.1007/978-981-10-5550-8_5
Gao, L., & Smith, R. T. (2015). Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. Journal of Biophotonics, 8(6), 441-456. https://doi.org/10.1002/jbio.201400051
Hayat Suhendar, M. T., & Widyani, Y. (2023). Machine learning application development guidelines using CRISP-DM and scrum concept [Conference article]. 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), Toba, Indonesia. https://doi.org/10.1109/ICoDSE59534.2023.10291438
Hu, Q., Wang, X., Jiang, J., Zhang, X.-P., & Ma, J. (2024). Exploring the spectral prior for hyperspectral image superresolution. IEEE Transactions on Image Processing, 33, 5260-5272. https://doi.org/10.1109/TIP.2024.3460470
Jiang, J., Ma, J., Chen, C., Wang, Z., Cai, Z., & Wang, L. (2018). SuperPCA: A Superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4581-4593. https://doi.org/10.1109/TGRS.2018.2828029
Jiang, Z., Chen, J., Chen, J., Feng, L., Jin, M., Zhong, H., Ju, L., Zhu, L., Xiao, Y., Jia, Z., Xu, C., Yu, D., Zhang, X., & Lou, J. (2022). Mortality due to respiratory system disease and lung cancer among female workers exposed to chrysotile in Eastern China: A cross-sectional study. Frontiers in Oncology, 12, 1-10. https://doi.org/10.3389/fonc.2022.928839
Jiménez-López, A. F., Jiménez-López, M., & Jiménez-López, F. R. (2015). Multispectral analysis of vegetation for remote sensing applications. ITECKNE, 12(2), 1242. https://doi.org/10.15332/iteckne.v12i2.1242
Kollar, Z., Plesznik, F., & Trumpf, S. (2018). Observer-Based Recursive Sliding Discrete Fourier Transform [Tips & Tricks]. IEEE Signal Processing Magazine, 35(6), 100-106. https://doi.org/10.1109/MSP.2018.2853196
Krówczyńska, M., Raczko, E., Staniszewska, N., & Wilk, E. (2020). Asbestos-cement roofing identification using remote sensing and convolutional neural networks (CNNs). Remote Sensing, 12(3), 408. https://doi.org/10.3390/rs12030408
Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2019). Deep learning for hyperspectral image classification: An overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690-6709. https://doi.org/10.1109/TGRS.2019.2907932
Liu, G., Yang, H., Zhao, H., Zhang, Y., Zhang, S., Zhang, X., & Jin, G. (2021). Combination of structured illumination microscopy with hyperspectral imaging for cell analysis. Analytical Chemistry, 93(29), 10056-10064. https://doi.org/10.1021/acs.analchem.1c00660
Mainieri Hidalgo, J. A., Putvinsky, V., & Mainieri Breedy, G. (2009). Mesotelioma pleural en Costa Rica. Acta Médica Costarricense, 48(1), 217. https://doi.org/10.51481/amc.v48i1.217
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., Ramírez- Quintana, M. J., & Flach, P. (2021). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061. https://doi.org/10.1109/TKDE.2019.2962680
Muhammed, S., Rahul, D., & Vishnukumar, S. (2020). Hyperspectral and multispectral image fusion techniques. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 467-471. https://doi.org/10.35940/ijrte.E4904.018520
Musk, A. W., de Klerk, N., Reid, A., Hui, J., Franklin, P., & Brims, F. (2020). Asbestos-related diseases. The International Journal of Tuberculosis and Lung Disease, 24(6), 562-567. https://doi.org/10.5588/ijtld.19.0645
Nava, J., & Hernández, P. (2012). Optimization of a hybrid methodology (CRISP-DM). In C. A. O Ortiz Zezzatti, C. Chira, A. Hernández, & M. Basurto (Eds.), Logistics Management and Optimization through Hybrid Artificial Intelligence Systems (pp. 356-379). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-4666-0297-7.ch014
Navalgund, R., Jayaraman, V., & Roy, P. (2007). Remote sensing applications: An overview. Current Science, 93,1747-1766.
Ortega, S., Fabelo, H., Iakovidis, D., Koulaouzidis, A., & Callico, G. (2019). Use of hyperspectral/multispectral imaging in gastroenterology. Shedding some–different–light into the dark. Journal of Clinical Medicine, 8(1), 36. https://doi.org/10.3390/jcm8010036
Ospina, D., Villegas, V. E., Rodríguez-Leguizamón, G., & Rondón-Lagos, M. (2019). Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos. Cancer Management and Research, 11, 4997-5012. https://doi.org/10.2147/CMAR.S205723
Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., & Trianni, G. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113, S110-S122. https://doi.org/10.1016/j.rse.2007.07.028
Pollard, J. M. (1971). The fast Fourier transform in a finite field. Mathematics of Computation, 25(114), 365-374. https://doi.org/10.1090/S0025-5718-1971-0301966-0
Ruiz Guzmán, E., Gallegos Rodríguez, A., Flores Garnica, J. G., & Mena Munguía, S. (2024). Aplicación de sensores remotos e inteligencia artificial en la gestión y conservación de bosques frente al cambio climático en México. E-CUCBA, 11(21), 142-149. https://doi.org/10.32870/e-cucba.vi21.332
Sabah Jaber, H. (2018). Classification of hyperspectral remote sensing for production minerals mapping using geological map and geomatics techniques. International Journal of Engineering & Technology, 7(4.20), 480-484. https://doi.org/10.14419/ijet.v7i4.20.26247
Sifnaios, S., Arvanitakis, G., Konstantinidis, F. K., Tsimiklis, G., Amditis, A., & Frangos, P. (2024). A deep learning approach for pixel-level material classification via hyperspectral imaging. https://doi.org/10.48550/arXiv.2409.13498
Taiwo, G., Vadera, S., & Alameer, A. (2025). Vision transformers for automated detection of pig interactions in groups. Smart Agricultural Technology, 10, 100774. https://doi.org/10.1016/j.atech.2025.100774
Wang, Z., Ma, Y., Zhang, Y., & Shang, J. (2022). Review of remote sensing applications in grassland monitoring. Remote Sensing, 14(12), 2903. https://doi.org/10.3390/rs14122903
Xing, Y., & Gómez, R. B. (2001). Hyperspectral image analysis using ENVI (environment for visualizing images). In W. E. Roper (Ed.), Proceedings of SPIE - The International Society for Optical Engineering (pp. 79-86). SPIE. https://doi.org/10.1117/12.428244
Zhang, X., Jiang, X., Jiang, J., Zhang, Y., Liu, X., & Cai, Z. (2022). Spectral–spatial and superpixelwise PCA for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2021.3057701
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Gabriel Elías Chanchí-Golondrino, Manuel Alejandro Ospina-Alarcón, Manuel Saba

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El (los) autor(es) al enviar su artículo a la Revista Científica certifica que su manuscrito no ha sido, ni será presentado ni publicado en ninguna otra revista científica.
Dentro de las políticas editoriales establecidas para la Revista Científica en ninguna etapa del proceso editorial se establecen costos, el envío de artículos, la edición, publicación y posterior descarga de los contenidos es de manera gratuita dado que la revista es una publicación académica sin ánimo de lucro.