DOI:

https://doi.org/10.14483/23448350.22613

Published:

08/30/2024

Issue:

Vol. 50 No. 2 (2024): May-August 2024

Section:

Research Articles

Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions

Análisis comparativo de algoritmos de control para robots móviles bajo condiciones de ruido

Authors

Keywords:

autonomous robots, control theory, mobile robots (en).

Keywords:

robótica móvil, robots autónomos, teoría de control (es).

Downloads

Abstract (en)

The control of mobile robots in dynamic environments poses unique challenges compared to traditional manipulators, particularly due to the influence of wheel configuration on robot dynamics. Despite extensive studies on pathfollowing algorithms, the inclusion of noise in simulations is often overlooked, which is critical for real-world applications. To address this gap, this paper provides a comprehensive evaluation of four popular control algorithms under various noise conditions, i.e., proportional-integral control, feedback linearization, Lyapunov-based control (LBC), and model predictive control (MPC). The algorithms were tested using a circular trajectory to ensure consistent and challenging conditions, and their performances were measured using the integral absolute error and mean squared error metrics. The results show that LBC and MPC offer superior robustness to noise, making them suitable for practical applications. This study contributes to the existing literature by highlighting the importance of considering noise in control algorithm evaluations and provides recommendations regarding the selection of appropriate controllers for mobile robots in noisy environments.

Abstract (es)

El control de robots móviles en entornos dinámicos presenta desafíos únicos en comparación con los manipuladores tradicionales, particularmente debido a la influencia de la configuración de las ruedas en la dinámica del robot. A pesar de los numerosos estudios sobre algoritmos de seguimiento de trayectorias, a menudo se pasa por alto la inclusión de ruido en las simulaciones, lo cual es crítico para las aplicaciones del mundo real. Para abordar esta brecha, este documento proporciona una evaluación exhaustiva de cuatro algoritmos de control populares bajo diversas condiciones de ruido, i.e., control proporcional-integral, linealización por retroalimentación, control basado en Lyapunov (LBC) y control predictivo basado en el modelo (MPC). Los algoritmos fueron probados utilizando una trayectoria circular para asegurar condiciones consistentes y desafiantes, y sus desempeños fueron medidos utilizando las métricas de error absoluto integral (IAE) y error cuadrático medio (MSE). Los resultados muestran que el LBC y el MPC ofrecen una robustez superior al ruido, lo que los hace adecuados para aplicaciones prácticas. Este estudio contribuye a la literatura existente al destacar la importancia de considerar el ruido en la evaluación de algoritmos de control, y proporciona recomendaciones respecto a la selección de controladores apropiados para robots móviles en entornos ruidosos.

References

Bakker, T., van Asselt, K., Bontsema, J., Müller, J., van Straten, G. (2010). A path following algorithm for mobile robots. Autonomous Robots, 29(1), 85-97. https://doi.org/10.1007/s10514-010-9182-3

Bascetta, L., Farina, M., Gabrielli, A., Matteucci, M. (2022). A feedback linearisation algorithm for singletrack models with structural stability properties. Control Engineering Practice, 128, e105318. https://doi.org/10.1016/j.conengprac.2022.105318

Chaib, S., Netto, M. S., Mammar, S. (2004). H /sub ∞/ adaptive, PID and fuzzy control: a comparison of controllers for vehicle lane keeping. IEEE Intelligent Vehicles Symposium, 2004, 139-144. https://doi.org/10.1109/IVS.2004.1336370

Guo, H., Cao, D., Chen, H., Sun, Z., Hu, Y. (2019). Model predictive path following control for autonomous cars considering a measurable disturbance: Implementation, testing, and verification. Mechanical Systems and Signal Processing, 118, 41-60. https://doi.org/10.1016/j.ymssp.2018.08.028

Juárez-Lora, A., Rodríguez-Ángeles, A. (2023). Bio-inspired autonomous navigation and formation controller for differential mobile robots. Entropy, 25(4), 582. https://doi.org/10.3390/e25040582

Lu, L., Yin, K.-L., de Lamare, R. C., Zheng, Z., Yu, Y., Yang, X., Chen, B. (2021). A survey on active noise control techniques -- Part I: Linear systems. http://arxiv.org/abs/2110.00531

Maxim, A., Copot, D., Copot, C., Ionescu, C. M. (2019). The 5W’s for control as part of Industry 4.0: Why, what, where, who, and when—A PID and MPC control perspective. Inventions, 4(1), e10. https://doi.org/10.3390/inventions4010010

Meng, J., Liu, A., Yang, Y., Wu, Z., Xu, Q. (2018). Two-wheeled robot platform based on PID control [Conference paper]. 5th International Conference on Information Science and Control Engineering (ICISCE). https://doi.org/10.1109/ICISCE.2018.00208

Muir, P. F., Neuman, C. P. (1987). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 4(2), 281-340. https://doi.org/10.1002/rob.4620040209

Özdemir, M., Öztürk, D. (2017). Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control. Energies, 10(12), e2134. https://doi.org/10.3390/en10122134

Paden, B., Cap, M., Yong, S. Z., Yershov, D., Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55. http://arxiv.org/abs/1604.07446

Rubio, F., Valero, F., Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), e9881419839596. https://doi.org/10.1177/1729881419839596

Uddin, N. (2017). Lyapunov-based control system design of two-wheeled robot [Conference paper]. International Conference on Computer, Control, Informatics and Its Applications (IC3INA). https://doi.org/10.1109/IC3INA.2017.8251752

Wang, G., Zhou, C., Yu, Y., Liu, X. (2019). Adaptive sliding mode trajectory tracking control for WMR considering skidding and slipping via extended state observer. Energies, 12(17), e3305. https://doi.org/10.3390/en12173305

Zhai, J., Song, Z. (2019). Adaptive sliding mode trajectory tracking control for wheeled mobile robots. International Journal of Control, 92(10), 2255-2262. https://doi.org/10.1080/00207179.2018.1436194

Zhang, X., Huang, Y., Wang, S., Meng, W., Li, G., Xie, Y. (2021). Motion planning and tracking control of a fourwheel independently driven steered mobile robot with multiple maneuvering modes. Frontiers of Mechanical Engineering, 16(3), 504-527. https://doi.org/10.1007/s11465-020-0626-y

How to Cite

APA

Escobedo, Ángel, Salas, V., Loyola, O., Sandoval, C., and Vidal Rojas, J. C. (2024). Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions. Revista Científica, 50(2), 71–84. https://doi.org/10.14483/23448350.22613

ACM

[1]
Escobedo, Ángel et al. 2024. Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions. Revista Científica. 50, 2 (Aug. 2024), 71–84. DOI:https://doi.org/10.14483/23448350.22613.

ACS

(1)
Escobedo, Ángel; Salas, V.; Loyola, O.; Sandoval, C.; Vidal Rojas, J. C. Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions. Rev. Cient. 2024, 50, 71-84.

ABNT

ESCOBEDO, Ángel; SALAS, Valery; LOYOLA, Oscar; SANDOVAL, C´esar; VIDAL ROJAS, Juan Carlos. Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions. Revista Científica, [S. l.], v. 50, n. 2, p. 71–84, 2024. DOI: 10.14483/23448350.22613. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22613. Acesso em: 21 nov. 2024.

Chicago

Escobedo, Ángel, Valery Salas, Oscar Loyola, C´esar Sandoval, and Juan Carlos Vidal Rojas. 2024. “Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions”. Revista Científica 50 (2):71-84. https://doi.org/10.14483/23448350.22613.

Harvard

Escobedo, Ángel (2024) “Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions”, Revista Científica, 50(2), pp. 71–84. doi: 10.14483/23448350.22613.

IEEE

[1]
Ángel Escobedo, V. Salas, O. Loyola, C. Sandoval, and J. C. Vidal Rojas, “Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions”, Rev. Cient., vol. 50, no. 2, pp. 71–84, Aug. 2024.

MLA

Escobedo, Ángel, et al. “Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions”. Revista Científica, vol. 50, no. 2, Aug. 2024, pp. 71-84, doi:10.14483/23448350.22613.

Turabian

Escobedo, Ángel, Valery Salas, Oscar Loyola, C´esar Sandoval, and Juan Carlos Vidal Rojas. “Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions”. Revista Científica 50, no. 2 (August 30, 2024): 71–84. Accessed November 21, 2024. https://revistas.udistrital.edu.co/index.php/revcie/article/view/22613.

Vancouver

1.
Escobedo Ángel, Salas V, Loyola O, Sandoval C, Vidal Rojas JC. Comparative Analysis of Control Algorithms for Mobile Robots under Noise Conditions. Rev. Cient. [Internet]. 2024 Aug. 30 [cited 2024 Nov. 21];50(2):71-84. Available from: https://revistas.udistrital.edu.co/index.php/revcie/article/view/22613

Download Citation

Visitas

57

Dimensions


PlumX


Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
No
11%
Metric
This journal
Other journals
Articles accepted 
36%
33%
Days to publication 
4
145

Indexed in

Editor & editorial board
profiles
Loading...