DOI:
https://doi.org/10.14483/23448350.23603Published:
10/31/2025Issue:
Vol. 52 No. 2 (2025): May-August 2025Section:
Research ArticlesSeasonal Analysis of Dissolved Organic Carbon in a Tropical Wetland Using UAV Technology
Análisis estacional del carbono orgánico disuelto en un humedal tropical con tecnología UAV
Keywords:
dissolved organic carbon, limnology, unmanned aerial vehicle, tropical wetland, RGB imagery, spectral analysis, multivariate statistical methods (en).Keywords:
carbono orgánico disuelto, limnología, vehículo aéreo no tripulado, humedal tropical, imágenes RGB, análisis espectral, métodos estadísticos no lineales (es).Downloads
Abstract (en)
Dissolved organic carbon (DOC) plays a key role in the global carbon cycle and the biogeochemical dynamics of aquatic ecosystems. In this study, an empirical model was applied to imagery from unmanned aerial vehicles, which were acquired during two hydrological periods (low water in February and high water in December), in order to assess the seasonal dynamics of DOC in El Eneal wetland. The Kruskal-Wallis test revealed significant differences (p=0.00015) in the DOC concentrations between periods, confirming the regulatory effect of the water level. Shifts in spectral signatures indicated variations in the molecular composition of DOC, with an increased blue reflectance observed during the high-water period. Reductions of up to 18% in vegetated zones were attributed to dilution, retention, and mineralization processes, whereas unvegetated areas exhibited only a 2% decrease. These findings underscore the influence of the hydrological cycle on DOC dynamics in tropical wetlands.
Abstract (es)
El carbono orgánico disuelto (COD) desempeña un papel fundamental en el ciclo global del carbono y en la dinámica biogeoquímica de los ecosistemas acuáticos. En este estudio se aplicó un modelo empírico a imágenes de vehículos aéreos no tripulados obtenidas en dos periodos hidrológicos (aguas bajas en febrero y altas en diciembre), en aras de evaluar la dinámica estacional del COD en el humedal El Eneal. La prueba de Kruskal- Wallis reveló diferencias significativas (p=0.00015) en las concentraciones de COD entre ambos periodos, confirmando el efecto regulador del nivel hídrico. Los cambios observados en las firmas espectrales sugirieron variaciones en la composición molecular del COD, con mayor reflectancia azul en aguas altas. Las reducciones de hasta 18 % en zonas vegetadas se atribuyeron a procesos de dilución, retención y mineralización, mientras que las áreas sin vegetación mostraron solo un 2 % de disminución. Estos resultados destacan el papel del ciclo hidrológico en la dinámica de los humedales tropicales.
References
Abbott, M. B., & Anderson, L. (2009). Lake-level fluctuations. In V. Gornitz (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments (pp. 489-492). Springer. https://doi.org/10.1007/978-1-4020-4411-3_121
Aguirre, N. (2013). Hidrobiología sanitaria. Facultad de Ingeniería, Universidad de Antioquia.
American Public Health Association (APHA). (2017). Standard methods for the examination of water and wastewater (23rd ed.) APHA.
Anderson, K. J., Kominoski, J. S., Osburn, C. L., & Smith, M. A. (2024). Shifting sources and fates of carbon with increasing hydrologic presses and pulses in coastal wetlands. Journal of Geophysical Research: Biogeosciences, 129(7), e2023JG007903. https://doi.org/10.1029/2023JG007903
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73, 1-14. https://doi.org/10.1007/s00027-010-0162-7
Butturini, A., Herzsprung P., Lechtenfeld O. J., Alcorlo P., Benaiges-Fernandez, R. Berlanga, M., Boadella, J., Freixinos Campillo, Z., Gómez, R. M., Sánchez-Montoya, M. M., Urmeneta, J., & Romaní A. M. (2022). Origin, accumulation and fate of dissolved organic matter in an extreme hypersaline shallow lake. Water Research, 221, 118727. https://doi.org/10.1016/j.watres.2022.118727
Castaño, L. (1999). Estudio preliminar de la Ciénaga la Boquilla, municipio de San Onofre [Undergraduate thesis].Universidad de Antioquia, Facultad de Ciencias Exactas y Naturales.
Catalán, N., Obrador, B., Felip, M., & Pretus, J. Ll. (2013). Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquatic Sciences, 75(4), 581-593. https://doi.org/10.1007/s00027-013-0302-y
Cawley, K. M., Campbell, J., Zwilling, M., & Jaffé, R. (2014). Evaluation of forest disturbance legacy effects on dissolved organic matter characteristics in streams at the Hubbard Brook Experimental Forest, New Hampshire.Aquatic Sciences, 76, 611-622. https://doi.org/10.1007/s00027-014-0358-3
Cillero Castro, C., Domínguez Gómez, J. A., Delgado Martín, J., Hinojo Sánchez, B. A., Cereijo Arango, J. L., Cheda Tuya, F. A., & Díaz-Varela, R. (2020). An UAV and satellite multispectral data approach to monitor water quality in small reservoirs. Remote Sensing, 12(9), 1514. https://doi.org/10.3390/rs12091514
Clark, C. D., De Bruyn, W. J., Brahm, B., & Aiona, P. (2020). Optical properties of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) levels in constructed water treatment wetland systems in southern California, USA. Chemosphere, 247, 125906. https://doi.org/10.1016/j.chemosphere.2020.125906
Demarty, M., & Prairie, Y. T. (2009). In situ dissolved organic carbon (DOC) release by submerged macrophyte–epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences, 66(9), 1522-1531. https://doi.org/10.1139/F09-099
El Alem, A., Chokmani, K., Venkatesan, A., Lhissou, R., Martins, S., Campbell, P., Cardille, J., McGeer, J., & Smith, S.(2024). Modeling dissolved organic carbon in inland waters using an unmanned aerial vehicles-borne hyperspectral camera. Science of The Total Environment, 954, 176258. https://doi.org/10.1016/j.scitotenv.2024.176258
Guzmán López, W. D. (2025). Caracterización limnológica del carbono orgánico disuelto en un humedal endorreico tropical mediante detección remota: ciénaga el Eneal, punta norte del golfo Morrosquillo, Colombia [Master’s thesis, Universidad de Antioquia].
Harvey, J. W., & McCormick, P. V. (2009). Groundwater's significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal, 17(1), 185-201. https://doi.org/10.1007/s10040-008-0379-x
Isgró, M. A., Basallote, M. D., & Barbero, L. (2022). Unmanned aerial system-based multispectral water quality monitoring in the Iberian Pyrite Belt (SW Spain). Mine Water and the Environment, 41(1), 30-41. https://doi.org/10.1007/s10230-021-00837-4
Kruskal, W. H., & Wallis, W. A. (1952). Uso de rangos en el análisis de varianza de un criterio. Revista de la Asociación Americana de Estadística, 47(260), 583-621.
Liu, F., Zhao, Q., Ding, J., Li, L., Wang, K., Zhou, H., Jiang, M., & Wei, J. (2023). Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. Environmental Research, 217, 114857. https://doi.org/10.1016/j.envres.2022.114857
Lønborg, C., Carreira, C., Jickells, T., & Álvarez-Salgado, X. A. (2020). Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Frontiers in Marine Science, 7, 466. https://doi.org/10.3389/fmars.2020.00466
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. https://scispace.com/pdf/some-methods-for-classification-and-analysis-of-multivariate-4pswti19oz.pdf
Mao, R., Li, S. Y., Zhang, X. H., Wang, X. W., & Song, C. C. (2017). Effect of long-term phosphorus addition on the quantity and quality of dissolved organic carbon in a freshwater wetland of Northeast China. Science of the Total Environment, 586, 1032-1037. https://doi.org/10.1016/j.scitotenv.2017.02.084
Mira, J. D., Urrego, L. E., & Monsalve, K. (2019). Determinantes naturales y antrópicos de la distribución, estructura y composición florística de los manglares de la Reserva Natural Sanguaré, Colombia. Revista de Biología Tropical, 67(4), 810-824. http://dx.doi.org/10.15517/rbt.v67i4.30833
Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. John Wiley & Sons.
Pagano, T., Bida, M., & Kenny, J. (2014). Trends in levels of allochthonous dissolved organic carbon in natural water: A review of potential mechanisms under a changing climate. Water, 6(10), 2862-2897. https://doi.org/10.3390/w6102862
Park, J., & Choi, M. (2022). A k-means clustering algorithm to determine representative operational profiles of a ship using AIS data. Journal of Marine Science and Engineering, 10(9), 1245. https://doi.org/10.3390/jmse10091245
Pillay, S. J., Bangira, T., Sibanda, M., Kebede Gurmessa, S., Clulow, A., & Mabhaudhi, T. (2024). Assessing dronebased remote sensing for monitoring water temperature, suspended solids and CDOM in inland waters: A global systematic review of challenges and opportunities. Drones, 8(12), 733. https://doi.org/10.3390/drones8120733
Porcal, P., Koprivnjak, J. F., Molot, L. A., Dillon, P. J. (2009). Humic substances—Part 7: The biogeochemistry of dissolved organic carbon and its interactions with climate change. Environmental Science and Pollution Research, 16, 714-726. https://doi.org/10.1007/s11356-009-0176-7
R Core Team. (2018). R: A language and environment for statistical computing (version 4.3.3) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/
Riis, T., Olesen, B., Clayton, J. S., Lambertini, C., Brix, H., & Sorrell, B. K. (2012). Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 102, 56-64. https://doi.org/10.1016/j.aquabot.2012.05.002
Ríos, E. L., Palacio, J. A., & Aguirre, N. J. (2008). Variabilidad fisicoquímica del agua en la ciénaga El Eneal, reserva natural Sanguaré municipio de San Onofre-Sucre, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 46, 39-45. http://hdl.handle.net/10495/4799
Ríos, E. L., Palacio, J. A., & Aguirre, N. J. (2009). Primary productivity and humic substances in the swamp El Eneal, San Onofre Sucre-Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 47, 67-72. http://hdl.handle.net/10495/5010
Sawant, B., Abeledo-Lameiro, M. J., Gil, Á. G., Couso-Pérez, S., Sharma, S., Sethia, U., & McGuigan, K. G. (2023). Good optical transparency is not an essential requirement for effective solar water disinfection (SODIS) containers. Journal of Environmental Chemical Engineering, 11(3), 110314. https://doi.org/10.1016/j.jece.2023.110314
Schulz, M., Kozerski, H. P., Pluntke, T., & Rinke, K. (2003). The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Research, 37(3), 569-578. https://doi.org/10.1016/S0043-1354(02)00276-2
Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52(3), 1208-1219. https://doi.org/10.4319/lo.2007.52.3.1208
Thrane, J. E., Hessen, D. O., & Andersen, T. (2014). The absorption of light in lakes: Negative impact of dissolved organic carbon on primary productivity. Ecosystems, 17, 1040-1052. https://doi.org/10.1007/s10021-014-9776-2
Toming, K., Kotta, J., Uuemaa, E., Sobek, S., Kutser, T., & Tranvik, L. J. (2020). Predicting lake dissolved organic carbon at a global scale. Scientific Reports, 10(1), 8471. https://doi.org/10.1038/s41598-020-65010-3
Tran, L. N., Vu, H., & Hall, B. D. (2022). Photosensitizing properties of dissolved organic carbon in Canadian prairie pothole wetland ponds change in response to sunlight. Canadian Water Resources Journal, 47(4), 184-201. https://doi.org/10.1080/07011784.2022.2108725
von Einem, J., & Graneli, W. (2010). Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnology and Oceanography, 55, 920-930. https://doi.org/10.4319/lo.2010.55.2.0920
Weaver, K. F., Morales, V. C., Dunn, S. L., Godde, K., & Weaver, P. F. (2017). An introduction to statistical analysis in research: With applications in the biological and life sciences. John Wiley & Sons. https://doi.org/10.1002/9781119454205.ch81
Wosnie, A., Mengistou, S., & Álvarez, M. (2020). Aquatic macrophytes in Ethiopian Rift Valley Lake Koka: Biologicalmanagement option to reduce sediment loading. Aquatic Botany, 165, 103242. https://doi.org/10.1016/j.aquabot.2020.103242
Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., & Ventelä, A. M. (2015). The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China).PLoS One, 10(6), e0127915. https://doi.org/10.1371/journal.pone.0127915
Zhu, X., Chen, L., Pumpanen, J., Ojala, A., Zobitz, J., Zhou, X., Laudon, H., Palviainen, M., Neitola, K., & Berninger, F. (2022). The role of terrestrial productivity and hydrology in regulating aquatic dissolved organic carbon concentrations in boreal catchments. Global Change Biology, 28(8), 2764-2778. https://doi.org/10.1111/gcb.16094
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Wilfer David Guzman López, Lina Claudia Giraldo, Fabio Velez Macias, Néstor Aguirre

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When submitting their article to the Scientific Journal, the author(s) certifies that their manuscript has not been, nor will it be, presented or published in any other scientific journal.
Within the editorial policies established for the Scientific Journal, costs are not established at any stage of the editorial process, the submission of articles, the editing, publication and subsequent downloading of the contents is free of charge, since the journal is a non-profit academic publication. profit.