Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada

Degradation study of phenol on pillared clay catalyst

Autores/as

  • Julio Andrés Cardona-Castaño Universidad de Caldas
  • Gonzalo Taborda-Ocampo Universidad de Caldas

Palabras clave:

Phenol, induction period, pillared clay, batch (en).

Palabras clave:

fenol (es).

Descargas

Resumen (es)

Se investiga la oxidación de fenol sobre catalizador de arcilla pilarizada en un reactor operando tanto en batch como en semibatch. Los experimentos fueron llevados a cabo a temperatura ambiente y presión atmosférica, con concentración de fenol de 100 mg/L, concentración de catalizador de 0,5 y 2,75 g/L y concentración de peróxido de hidrógeno del  50 y el 100 % de la cantidad estequiométrica necesaria para la total degradación de fenol. Se comparan ambos procesos en términos de degradación de fenol, degradación de H2O2, formación y degradación de intermediarios aromáticos y ácidos de cadena corta. Se determinó, que la velocidad de degradación de fenol e intermediarios aromáticos es más lenta en el proceso en semibatch. Sin embargo, hay un uso más eficiente del peróxido de hidrógeno en el proceso semibatch, favoreciendo la reacción con las especies orgánicas y  reduciendo las reacciones competitivas.

Resumen (en)

The pillaring of a Colombian natural clay (bentonite) with the Al-Fe systems and the application for catalytic wet peroxide oxidation (CWPO) using phenol as target compound at 291,15 K has been studied. The solid was characterized by DRX and specific surface area using the BET model. The experiments were conducted at temperature of 291,15 K, atmospheric pressure, phenol concentration of 100 mg/L, catalyst concentration of  0,5 and  2,75 g/L and hydrogen peroxide concentration of  0,0265 and 0,053 M in semibatch and 7,4x10-3 and 0,0148 M in batch, equivalent to 50 and 100% of the stoichiometric amount needed for complete phenol degradation, respectively.Both processes were compared in terms of degradation of phenol, degradation of H2O2 and aromatic intermediates and short chain acids. It was determined that the rate of degradation of phenol and aromatic intermediates is slower in the semibatch process. However, more efficient hydrogen peroxide in the semibatch process was presented use favoring reaction with organic species and reducing competitive reactions.

Biografía del autor/a

Julio Andrés Cardona-Castaño, Universidad de Caldas

Docente Universidad de caldas. Departamento de Química

Gonzalo Taborda-Ocampo, Universidad de Caldas

Docente Universidad de Caldas

Referencias

Agustina, T. E., H. M. Ang, and V. K. Vareek. 2005. “A Review of Synergistic Effect of Photocatalysis and Ozonation on Wastewater Treatment.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6(4):264–73.

Arslan-Alaton, Idil, Gokce Tureli, and Tugba Olmez-Hanci. 2009. “Treatment of Azo Dye Production Wastewaters Using Photo-Fenton-like Advanced Oxidation Processes: Optimization by Response Surface Methodology.” Journal of Photochemistry and Photobiology A: Chemistry 202(2-3):142–53.

Barrault, J., C. Bouchoule, et al. 2000. “Catalytic W E T Peroxide Oxidation over Mixed ( AI-Fe ) Pillared Clays.” 749–54.

Barrault, J., M. Abdellaoui, et al. 2000. “Catalytic Wet Peroxide Oxidation over Mixed ( Al – Fe ) Pillared Clays.” 27:225–30.

Barraulta, J., C. Bouchoulea, K. Echachoui, M. Trabelsi, and F.

Bergayab. 1998. “Catalytic Wet Peroxide Oxidation ( CWPO ) of Phenol over Mixed ( Al-Cu ) -Pillared Clays.” 15:269–74.

Benatti, Cláudia Telles, Célia Regina Granhen Tavares, and Terezinha Aparecida Guedes. 2006. “Optimization of Fenton’s Oxidation of Chemical Laboratory Wastewaters Using the Response Surface Methodology.” Journal of environmental management 80(1):66–74.

Bianco, Barbara, Ida De Michelis, and Francesco Vegliò. 2011. “Fenton Treatment of Complex Industrial Wastewater: Optimization of Process Conditions by Surface Response Method.” Journal of hazardous materials 186(2-3):1733–38.

Bose, Purnendu, William H. Glaze, D. Scott Maddox, and Chapel Hill. 1998. “DEGRADATION OF RDX BY VARIOUS ADVANCED OXIDATION PROCESSES : I . REACTION RATES.” 32(4).

Brillas, Enric, Ignasi Sirés, and Mehmet a Oturan. 2009. “Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry.” Chemical reviews 109(12):6570–6631.

Byrne, J. A. N. T. H. O. N. Y., Chemical Sciences, and Northern Ireland. 1997. “Research Note Photocatalytic Treatment of Humic Substances in Drinking Water*.” 31(5):1223–26.

Carriazo, J. et al. 2005. “Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al-Ce-Fe.” Water research 39(16):3891–99.

Carriazo, J. G., E. Guelou, J. Barrault, J. M. Tatibouët, and S. Moreno. 2003. “Catalytic Wet Peroxide Oxidation of Phenol over Al–Cu or Al–Fe Modified Clays.” Applied Clay Science 22(6):303–8.

Casal, Blanca, Pilar Aranda, Eduardo Ruiz-hitzky, and Maria Angeles Martı. 2003. “Fe-Containing Pillared Clays as Catalysts for Phenol Hydroxylation.” 22:263–77.

Catrinescu, Cezar, Carmen Teodosiu, Matei Macoveanu, Jocelyne Miehe-Brendlé, and Ronan Le Dred. 2003. “Catalytic Wet Peroxide Oxidation of Phenol over Fe-Exchanged Pillared Beidellite.” Water research 37(5):1154–60.

Centi, Gabriele, Siglinda Perathoner, Teresa Torre, and Maria Grazia Verduna. 2000. “Catalytic Wet Oxidation with H2O2 of Carboxylic Acids on Homogeneous and Heterogeneous Fenton-Type Catalysts.” Catalysis Today 55(1-2):61–69.

Chamarro, E., a Marco, and S. Esplugas. 2001. “Use of Fenton Reagent to Improve Organic Chemical Biodegradability.” Water research 35(4):1047–51.

Chen, Jianxin and Lizhong Zhu. 2006. “Catalytic Degradation of Orange II by UV-Fenton with Hydroxyl-Fe-Pillared Bentonite in Water.” Chemosphere 65(7):1249–55.

Chen, Qiuqiang, Pingxiao Wu, Yuanyuan Li, Nengwu Zhu, and Zhi Dang. 2009. “Heterogeneous Photo-Fenton Photodegradation of Reactive Brilliant Orange X-GN over Iron-Pillared Montmorillonite under Visible Irradiation.” Journal of hazardous materials 168(2-3):901–8.

Feng, Jiyun, Xijun Hu, Po Lock Yue, Huai Yong Zhu, and Gao Qing Lu. 2003. “Discoloration and Mineralization of Reactive Red HE-3B by Heterogeneous Photo-Fenton Reaction.” Water research 37(15):3776–84.

Garrido-Ramírez, E. G., B. K. .. Theng, and M. L. Mora. 2010. “Clays and Oxide Minerals as Catalysts and Nanocatalysts in Fenton-like Reactions — A Review.” Applied Clay Science 47(3-4):182–92. Retrieved July 13, 2012 (http://linkinghub.elsevier.com/retrieve/pii/S0169131709003408).

Guedes, Anabela M., Luis M. Madeira, Rui a Boaventura, and Carlos a Costa. 2003. “Fenton Oxidation of Cork Cooking Wastewater--Overall Kinetic Analysis.” Water research 37(13):3061–69. Retrieved March 30, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/14521136).

Guélou, Erwan, Joël Barrault, Jeanine Fournier, and Jean-Michel Tatibouët. 2003. “Active Iron Species in the Catalytic Wet Peroxide Oxidation of Phenol over Pillared Clays Containing Iron.” Applied Catalysis B: Environmental 44(1):1–8. Retrieved September 17, 2012 (http://linkinghub.elsevier.com/retrieve/pii/S0926337303000031

).

Guélou, Erwan, Jean-michel Tatibouët, and Joël Barrault. 2010. “Pillared Clays and Related Catalysts” edited by A. Gil, S. A. Korili, R. Trujillano, and M. A. Vicente. Retrieved August 10, 2012 (http://www.springerlink.com/index/10.1007/978-1-4419-6670-4).

Guo, Jing and Muthanna Al-Dahhan. 2006. “Activity and Stability of Iron-Containing Pillared Clay Catalysts for Wet Air Oxidation of Phenol.” Applied Catalysis A: General 299:175–84. Retrieved September 17, 2012

(http://linkinghub.elsevier.com/retrieve/pii/S0926860X05007957

).

Herney-Ramirez, J., Miguel a. Vicente, and Luis M. Madeira. 2010. “Heterogeneous Photo-Fenton Oxidation with Pillared Clay-Based Catalysts for Wastewater Treatment: A Review.” Applied Catalysis B: Environmental 98(1-2):10–26. Retrieved March 2, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0926337310001943).

Kasiri, M. B., H. Aleboyeh, and a. Aleboyeh. 2008. “Degradation of Acid Blue 74 Using Fe-ZSM5 Zeolite as a Heterogeneous Photo-Fenton Catalyst.” Applied Catalysis B: Environmental 84(1-2):9–15. Retrieved April 19, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0926337308000957).

Kurian, Manju and S. Sugunan. 2006. “Wet Peroxide Oxidation of Phenol over Mixed Pillared Montmorillonites.” Chemical Engineering Journal 115(3):139–46. Retrieved May 9, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S1385894705002792).

Lucas, Marco S., Albino a Dias, Ana Sampaio, Carla Amaral, and José a Peres. 2007. “Degradation of a Textile Reactive Azo Dye by a Combined Chemical-Biological Process: Fenton’s Reagent-Yeast.” Water research 41(5):1103–9. Retrieved May 12, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/17261325).

Magario, I., F. S. García Einschlag, E. H. Rueda, J. Zygadlo, and M. L. Ferreira. 2012. “Mechanisms of Radical Generation in the Removal of Phenol Derivatives and Pigments Using Different Fe-Based Catalytic Systems.” Journal of Molecular Catalysis A: Chemical 352:1–20. Retrieved April 2, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S1381116911004043).

Malato, Sixto et al. 2007. “Photocatalytic Decontamination and Disinfection of Water with Solar Collectors.” Catalysis Today 122(1-2):137–49. Retrieved March 13, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0920586107000478).

Melero, J. a, F. Martínez, J. a Botas, R. Molina, and M. I. Pariente. 2009. “Heterogeneous Catalytic Wet Peroxide Oxidation Systems for the Treatment of an Industrial Pharmaceutical Wastewater.” Water research 43(16):4010–18. Retrieved July 29, 2012 (http://www.ncbi.nlm.nih.gov/pubmed/19447465).

Molina, C. B., J. a. Casas, J. a. Zazo, and J. J. Rodríguez. 2006. “A Comparison of Al-Fe and Zr-Fe Pillared Clays for Catalytic Wet Peroxide Oxidation.” Chemical Engineering Journal 118(1-2):29–35. Retrieved April 3, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S1385894706000131

).

Najjar, Wahiba, Samia Azabou, Sami Sayadi, and Abdelhamid Ghorbel. 2007. “Catalytic Wet Peroxide Photo-Oxidation of Phenolic Olive Oil Mill Wastewater Contaminants.” Applied Catalysis B: Environmental 74(1-2):11–18. Retrieved March 30, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0926337307000070).

Neyens, E. and J. Baeyens. 2003. “A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique.” Journal of Hazardous Materials 98(1-3):33–50. Retrieved (http://linkinghub.elsevier.com/retrieve/pii/S0304389402002820).

Nogueira, Raquel F. Pupo, Mirela C. Oliveira, and Willian C. Paterlini. 2005. “Simple and Fast Spectrophotometric Determination of H2O 2 in Photo-Fenton Reactions Using Metavanadate.” Talanta 66(1):86–91.

Oller, I., S. Malato, and J. a Sánchez-Pérez. 2011. “Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination--a Review.” The Science of the total environment 409(20):4141–66. Retrieved March 4, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/20956012).

Pera-Titus, Marc, Verónica Garcı́a-Molina, Miguel a Baños, Jaime Giménez, and Santiago Esplugas. 2004. “Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review.” Applied Catalysis B: Environmental 47(4):219–56. Retrieved February 27, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0926337303004533).

Pirkanniemi, Kari and Mika Sillanpää. 2002. “Heterogeneous Water Phase Catalysis as an Environmental Application: A Review.” Chemosphere 48(10):1047–60. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/12227510).

Pontes, Ricardo F. F., José E. F. Moraes, Amilcar Machulek, and José M. Pinto. 2010. “A Mechanistic Kinetic Model for Phenol Degradation by the Fenton Process.” Journal of hazardous materials 176(1-3):402–13. Retrieved September 18, 2012 (http://www.ncbi.nlm.nih.gov/pubmed/20005036).

Sharp, Emma L., Simon a Parsons, and Bruce Jefferson. 2006. “Seasonal Variations in Natural Organic Matter and Its Impact on Coagulation in Water Treatment.” The Science of the total environment 363(1-3):183–94. Retrieved March 6, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/15987654).

Sun, Jian-Hui et al. 2007. “A Kinetic Study on the Degradation of P-Nitroaniline by Fenton Oxidation Process.” Journal of hazardous materials 148(1-2):172–77. Retrieved May 1, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/17379403).

Timofeeva, M. N. et al. 2005. “Synthesis, Characterization and Catalytic Application for Wet Oxidation of Phenol of Iron-Containing Clays.” Applied Catalysis B: Environmental 59(3-4):243–48. Retrieved March 30, 2013 (http://linkinghub.elsevier.com/retrieve/pii/S0926337305000822).

Yamal-Turbay, Evelyn, Esther Ja??n, Mois??s Graells, and Montserrat P??rez-Moya. 2013. “Enhanced Photo-Fenton Process for Tetracycline Degradation Using Efficient Hydrogen Peroxide Dosage.” Journal of Photochemistry and Photobiology A: Chemistry 267:11–16. Retrieved (http://dx.doi.org/10.1016/j.jphotochem.2013.05.008).

Zazo, J. a, J. a Casas, a F. Mohedano, and J. J. Rodriguez. 2009. “Semicontinuous Fenton Oxidation of Phenol in Aqueous Solution. A Kinetic Study.” Water research 43(16):4063–69. Retrieved March 5, 2013 (http://www.ncbi.nlm.nih.gov/pubmed/19616818).

Zhou, Tao, Yaozhong Li, Jing Ji, Fook-Sin Wong, and Xiaohua Lu. 2008. “Oxidation of 4-Chlorophenol in a Heterogeneous Zero Valent iron/H2O2 Fenton-like System: Kinetic, Pathway and Effect Factors.” Separation and Purification Technology 62(3):551–58. Retrieved September 18, 2012 (http://linkinghub.elsevier.com/retrieve/pii/S1383586608001238).

Cómo citar

APA

Cardona-Castaño, J. A., y Taborda-Ocampo, G. (2016). Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada. Revista Científica, 25(2), 265–279. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a10

ACM

[1]
Cardona-Castaño, J.A. y Taborda-Ocampo, G. 2016. Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada. Revista Científica. 25, 2 (ago. 2016), 265–279. DOI:https://doi.org/10.14483//udistrital.jour.RC.2016.25.a10.

ACS

(1)
Cardona-Castaño, J. A.; Taborda-Ocampo, G. Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada. Rev. Cient. 2016, 25, 265-279.

ABNT

CARDONA-CASTAÑO, Julio Andrés; TABORDA-OCAMPO, Gonzalo. Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada. Revista Científica, [S. l.], v. 25, n. 2, p. 265–279, 2016. DOI: 10.14483//udistrital.jour.RC.2016.25.a10. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10428. Acesso em: 28 mar. 2024.

Chicago

Cardona-Castaño, Julio Andrés, y Gonzalo Taborda-Ocampo. 2016. «Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada». Revista Científica 25 (2):265-79. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a10.

Harvard

Cardona-Castaño, J. A. y Taborda-Ocampo, G. (2016) «Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada», Revista Científica, 25(2), pp. 265–279. doi: 10.14483//udistrital.jour.RC.2016.25.a10.

IEEE

[1]
J. A. Cardona-Castaño y G. Taborda-Ocampo, «Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada», Rev. Cient., vol. 25, n.º 2, pp. 265–279, ago. 2016.

MLA

Cardona-Castaño, Julio Andrés, y Gonzalo Taborda-Ocampo. «Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada». Revista Científica, vol. 25, n.º 2, agosto de 2016, pp. 265-79, doi:10.14483//udistrital.jour.RC.2016.25.a10.

Turabian

Cardona-Castaño, Julio Andrés, y Gonzalo Taborda-Ocampo. «Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada». Revista Científica 25, no. 2 (agosto 31, 2016): 265–279. Accedido marzo 28, 2024. https://revistas.udistrital.edu.co/index.php/revcie/article/view/10428.

Vancouver

1.
Cardona-Castaño JA, Taborda-Ocampo G. Estudio de la degradación de fenol sobre catalizador de arcilla pilarizada. Rev. Cient. [Internet]. 31 de agosto de 2016 [citado 28 de marzo de 2024];25(2):265-79. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/10428

Descargar cita

Visitas

440

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...