DOI:
https://doi.org/10.14483/23448393.22136Published:
2024-09-19Issue:
Vol. 29 No. 3 (2024): September-DecemberSection:
Environmental EngineeringLightning Occurrence between 2016 and 2020 in Fusagasugá, Cundinamarca, Colombia
Ocurrencia de rayos entre 2016 y 2020 en Fusagasugá, Cundinamarca, Colombia
Keywords:
Lightning, flashes, climatology, lightning location (en).Keywords:
rayos, descargas atmosféricas, climatología, localizacion de rayos (es).Downloads
Abstract (en)
Context: Lightning is a powerful natural phenomenon that poses a risk to life and infrastructure, given the enormous amounts of energy it can transfer in short periods of time, especially in cloud-to-ground strikes. Since lightning requires specific meteorological conditions for its generation, its occurrence is often influenced by conditions such as topography, rainfall, and wind patterns. Therefore, having information about lightning occurrences in a region is crucial for comprehensive risk management against this extreme natural phenomenon.
Methods: In this study, we implemented a methodology based on knowledge discovery in databases (KDD) to analyze and visualize data provided by Vaisalas's GLD360 lightning location network.
Results: The results indicate that, in Fusagasugá, Cundinamarca, there are two lightning activity peaks: one in the first half of the year (March) and another in the second half (October). Lightning events are most frequent during the afternoon, with a peak around 5:00 p.m. (local time). Additionally, most lightning events occur in two areas with low population density, covering 25\% of the territory and ranging from 500 to 1000 meters above sea level.
Conclusions: These findings highlight the importance of precise knowledge regarding the location of lightning events for planning prevention and risk management. In this case, efforts and resources should primarily focus on a small proportion of the municipality to substantially impact the population and infrastructure.
Abstract (es)
Contexto: Los rayos son un fenómeno natural poderoso que representa un riesgo para la vida y la infraestructura, pues puede transferir enormes cantidades de energía en cortos periodos de tiempo, especialmente en descargas nube-tierra. Dado que los rayos requieren condiciones meteorológicas específicas para su generación, su ocurrencia suele estar influenciada por factores como la topografía, la precipitación y los patrones de viento. Por lo tanto, contar con información sobre la ocurrencia de rayos en una región es crucial para una gestión integral del riesgo frente a este fenómeno natural extremo.
Métodos: En este estudio se implementó una metodología basada en la extracción de conocimiento en bases de datos (KDD) para analizar y visualizar los datos proporcionados por la red de localización de rayos GLD360 de Vaisala.
Resultados: Los resultados indican que, en Fusagasugá, Cundinamarca, existen dos picos de actividad de rayos: uno en la primera mitad del año (marzo) y otro en la segunda mitad (octubre). Los eventos de rayos son más frecuentes durante la tarde, con un pico alrededor de las 5:00 p.m. (hora local). Además, la mayoría de los eventos de rayos ocurren en dos áreas con baja densidad poblacional, que cubren el 25 % del territorio y se encuentran a una altitud de entre 500 y 1000 metros sobre el nivel del mar.
Conclusiones: Estos hallazgos destacan la importancia de contar con un conocimiento preciso sobre la ubicación de los eventos de rayos para la planificación de la prevención y la gestión del riesgo. En este caso, los esfuerzos y recursos deben centrarse principalmente en una pequeña proporción del municipio para tener un impacto sustancial en la población y la infraestructura.
References
J. R. Dwyer and M. a. Uman, “The physics of lightning,” Physics Reports, vol. 534, pp. 147–241, 10 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S037015731300375X
J. Inampués, D. Aranguren, A. Cruz, J. Gonzalez, H. Torres, and H. D. Betz, “Severe thunderstorms in the colombia and venezuela high lightning active areas,” 2017 International Symposium on Lightning Protection, XIV SIPDA 2017, pp. 359–364, 2017.
V. B. S. Silva and V. E., The South American Monsoon System: Climatology and Variability, 2012.
D. Aranguren, J. López, J. Inampués, H. Torres, and H. D. Betz, “Cloud-to-ground ligthning activity in colombia and the influence of topography,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 154, pp. 1850–1855, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jastp.2016.08.010
I. Hoyos, F. Dominguez, J. Cañón-Barriga, J. A. Martínez, R. Nieto, L. Gimeno, and P. A. Dirmeyer, “Moisture origin and transport processes in colombia, northern south america,” Climate Dynamics, vol. 50, pp. 971–990, 2018.
S. Soula, J. K. Kasereka, J. F. Georgis, and C. Barthe, “Lightning climatology in the congo basin,” Atmospheric Research, vol. 178-179, pp. 304–319, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.atmosres.2016.04.006
U. Sonnadara, W. Jayawardena, and M. Fernando, “Climatology of lightning flash activities over sri lanka,” Theoretical and Applied Climatology, 2018.
Y. Kuleshov, Thunderstorm and Lightning Climatology of Australia, 2012.
D. J. Cecil, D. E. Buechler, and R. J. Blakeslee, “Trmm lis climatology of thunderstorm occurrence and conditional lightning flash rates,” Journal of Climate, vol. 28, pp. 6536–6547, 2015.
D. Aranguren, J. Lopez, J. Montanyà, and H. Torres, “Natural observatories for lightning research in colombia,” 2018, pp. 279–283.
B. S. A. Murillo, E. A. S. Ríos, and K. A. V. López, “Actividad de rayos en el departamento de santander entre 2014 y 2016,” Ingeniería, vol. 26, pp. 419–435, 1 2022.
D. J. Cecil, D. E. Buechler, and R. J. Blakeslee, “Gridded lightning climatology from trmm-lis and otd: Dataset description,” Atmospheric Research, vol. 135-136, pp. 404–414, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.atmosres.2012.06.028
J. Herrera, C. Younes, and L. Porras, “Cloud-to-ground lightning activity in colombia: A 14-year study using lightning location system data,” Atmospheric Research, vol. 203, pp. 164–174, 2018. [Online]. Available: https://doi.org/10.1016/j.atmosres.2017.12.009
L. D. Tarabukina and V. I. Kozlov, “Climatology of lightning activity in northern asia in 2009-2016,” 2017, pp. 1–7.
F. Diaz, D. Ortiz, and F. Roman, “Lightning climatology in colombia,” Theoretical and Applied Climatology, 2022. [Online]. Available: https://doi.org/10.1007/s00704-022-04012-9
N. Hoyos, J. Escobar, J. C. Restrepo, A. M. Arango, and J. C. Ortiz, “Impact of the 2010-2011 la niña phenomenon in colombia, south america: The human toll of an extreme weather event,” Applied Geography, vol. 39, pp. 16–25, 2013. [Online]. Available: http:
//dx.doi.org/10.1016/j.apgeog.2012.11.018
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Fernando Díaz-Ortiz, Neyder Perilla López, Juan Pablo Ospina Carrillo, Pedro Cifuentes Guerrero
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.