Application of Analytical Uncertainty Costs of Solar,Wind and Electric Vehicles in Optimal Power Dispatch

Juan Arévalo, Fabian Santos, Sergio Rivera


Context: Currently, renewable energy sources are playing an important role in counteracting the environmental impact of traditional energy sources. For this reason, system operators must have analytical tools that allow them to incorporate these new forms of energy. In electrical power systems, when incorporating renewable resources such as photovoltaic solar generation, wind power generation or electric vehicles, uncertainty is introduced due to the stochasticity of primary resources.

Method: Uncertainty costs are proposed that incorporate the injected power variability of the main sources of renewable energy (solar and wind) and the consumed power (electric vehicles). Variability is considered by the probability distributions of the primary sources of renewable energy (solar irradiation and wind speed).

Results: The main result of this research is the application of analytical costs of uncertainty. In this way it is possible to modify the cost function of a traditional economic dispatch. Additionally, it is proposed to solve the problem with a heuristic optimization method of economic dispatch of active-reactive power. Finally, a comparison is made with the operating cost of the system without the incorporation of renewable energies.

Conclusions: The proposed model in this article is a potential decision-making tool that power system operators may consider in the operation of the system. The tool is capable of considering the uncertainties of the primary sources of renewable energy. The probability distribution of the primary source forecast is assumed to be known. An opportunity in order to extend the model is to study its applicability to dynamic time horizons, contemplating the constraints of the unit commitment problem


Renewable Energy, Economic Dispatch, Uncertainty Cost.


J. Arévalo, F. Santos and S. Rivera, Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy Generation and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation. International Journal of Power and Energy Conversion. 2017. [En línea]. Disponible en:

H. Kamankesh, V. Agelidis and A. Kavousi-Fard, “Optimal Scheduling of Renewable Micro-Grids Considering Plug-In Hybrid Electric Vehicle Charging Demand”. Energy, 100, 285–297, 2016.

B. C. Gu, Z. M. Chen, T. Y. Jiv, L. L. Zhang, Q. H.Wu, M. S. Li and J. H. Huang, “Quasi-Monte Carlo Simulation Based Economic Dispatch With Wind Power Integrated”. IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia), 264–269, Nov., 2016.

H. Huang, C. Y. Chung, K. W. Chan and H. Chen, “Quasi-Monte Carlo Based Probabilistic Small Signal Stability Analysis for Power Systems With Plug-In Electric Vehicle and Wind Power Integration”. IEEE Transactions on Power Systems, 28(3), 3335–3343, Aug., 2013.

J. Hetzer, D. C. Yu and K. Bhattarai, “An Economic Dispatch Model Incorporating Wind Power”. IEEE Transactions on Energy Conversion, 23(2), 603–611, June 2008.

J. Zhao, F. Wen, Z. Y. Dong, Y. Xue and K. P. Wong, “Optimal Dispatch of Electric Vehicles and Wind Power Using Enhanced Particle Swarm Optimization”. IEEE Transactions on Industrial Informatics, 8(4):889–899, Nov., 2012.

I. Erlich, K. Lee, J. Rueda and S. Wildenhues, “Competition on Application Of Modern Heuristic Optimization Algorithms For Solving Optimal Power Flow Problems”. Working Group on Modern Heuristic Optimization (WGMHO)Under the IEEE PES Analytic Methods in Power Systems (AMPS) Committee, February 2014.

M. I. Ennes and A. L. Diniz, “A General Equivalent Thermal Cost Function For Economic Dispatch Problems”. 2012 IEEE Power and Energy Society General Meeting, pages 1–6, July, 2012.

R. S.Wibowo, F. F. Utama, D. F. U. Putra and N. K. Aryani, Unit Commitment With Non-Smooth Generation Cost Function Using Binary Particle Swarm Optimization. In 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 571–576, July 2016.

J. Bastidas, C. Ramos and E. Franco, Modeling And Parameter Calculation of Photovoltaic Fields in Irregular Weather Conditions. Revista Ingeniería, 17(1), 37–48, Junio, 2012.

T. Chang, “Investigation on Frequency Distribution of Global Radiation Using Different Probability Density Functions”. International Journal of Applied Science and Engineering, 8(2), 99–107, 2010.

S. Surender Reddy, P. R. Bijwe and A. R. Abhyankar, “Real-time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period”. IEEE Systems Journal, 9(4), 1440–1451, Dec., 2015.

C. Ramos, A. Saavedra and E. Arango, “Distributed Maximum Power Point Tracking in Wind Micro-Grids”. Revista Ingeniería, 17(1), 5–13, Junio 2012.

J. Ceballos, E. Caicedo and S. Ospina, “Una propuesta metodológica para dimensionar el impacto de los vehículos eléctricos sobre la red eléctrica”. Revista Ingeniería, 21(2), 154–175, Agosto, 2016.

W. Group, “Common format for exchange of solved load flow data”. IEEE Transactions on Power Apparatus and Systems, PAS-92(6), 1916–1925, Nov, 1973.

NASA Athmospheric Science Data Center, Surface Meteorology and Solar Energy: Retscreen Data. 2017. [En línea]. Disponible en: https: //

IDEAM [Instituto de Hidrología Meteorología y Estudios Ambientales]. Atlas interactivo del viento de Colombia. 2015. [En línea]. Disponible en:

UPME [Unidad de Planeación Minero Energética], Integración de las energías renovables no convencionales en Colombia. 2017. [En línea]. Disponible en:

C. D. Charalambous and N. U. Ahmed, “Centralized Versus Decentralized Optimization of Distributed Stochastic Differential Decision Systems With Different Information Structures-Part I: A General Theory”. IEEE Transactions on Automatic Control, 62(3),1194–1209, March, 2017.

R. D. Zimmerman, C. E. Murillo-Sanchez and R. J. Thomas, “Matpower: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education”. IEEE Transactions on Power Systems, 26(1), 12–19, Feb., 2011.

C. Zhao and R. Jiang, “Distributionally Robust Contingency-Constrained Unit Commitment. IEEE Transactions on Power Systems”. PP(99),1–1, 2017.

H. Ye, Y. Ge, M. Shahidehpour and Z. Li, “Uncertainty Marginal Price, Transmission Reserve, And Day-Ahead Market Clearing with Robust Unit Commitment”. IEEE Transactions on Power Systems, 32(3), 1782–1795, May, 2017.


Creative Commons License


Facultad de Ingeniería

Universidad Distrital Francisco José de Caldas

ISSN 0121-750X   E-ISSN 2344-8393