Análisis de los Sistemas de Almacenamiento Basados en Baterías para Microrredes Eléctricas

Analysis of storage systems based on batteries for electrical microgrids

  • César Leonardo Trujillo Rodríguez Universidad Distrital Francisco José de Caldas
  • Rafael Antonio Peña Suesca Universidad Distrital Francisco José de Caldas
  • Andrés Ignacio Santos León Universidad Distrital Francisco José de Caldas
Palabras clave: Batteries, Microgrids, Storage systems (en_US)
Palabras clave: Baterías, Microrredes, Sistemas de almacenamiento (es_ES)

Resumen (es_ES)

Contexto: En la implementación de una microrrred la parte más costosa es el sistema de almacenamiento de energía, el cual, en la mayoría de casos está conformado por baterías. Diferentes autores motivados por alcanzar la reducción de costos de implementación que permita el crecimiento de las microrredes han dedicado sus esfuerzos a desarrollar técnicas y topologías de microrred que permitan la optimización del sistema de almacenamiento de energía buscando el compromiso entre la vida útil, mantenimiento e inversión inicial.

Método: El objetivo del presente artículo es presentar los criterios de selección que se utilizan para seleccionar el tipo de batería en una microrred, siendo estos suficientes para asegurar la viabilidad económica de la misma a lo largo de todo el ciclo de vida del sistema. Para alcanzar dicho objetivo se consultaron artículos indexados en revistas de contenido científico y de ingeniería clasificando los criterios en dos grupos, criterios técnicos y criterios técnico-económicos.

Resultados: Se pudo establecer que los criterios técnicos aseguran el cumplimiento de las características técnicas que requiere el usuario final de la microrred, pero no consideran la operación del sistema de almacenamiento a lo largo de toda la vida útil, en contraste, los criterios técnico-económicos permiten garantizar el funcionamiento del sistema de almacenamiento de la microrred a lo largo de toda la duración del proyecto.

Conclusiones: La clasificación de criterios realizada en este artículo es una guía que permite para motivar el avance de investigaciones con el fin de establecer metodologías que garanticen costos de implementación viables a nivel de microrredes partiendo del análisis técnico-económico del sistema de almacenamiento.

Palabras clave: Baterías, Microrredes, Sistemas de almacenamiento.

Agradecimientos: Este artículo presenta resultados parciales del proyecto de investigación titulado “Interoperabilidad de Microrredes” financiado por el CIDC-UD, 2019.

Resumen (en_US)

Context:  In the implementation of a microgrid the most expensive element is the energy storage system, which, in most cases is made by batteries. Different authors motivated to achieve the reduction of implementation costs that allow the growth of microgrids have dedicated their efforts to develop techniques and topologies for microgrids that allow the optimization of the energy storage system seeking the compromise between the useful life, maintenance and investment initial.

Method: The mains of this paper to present the selection criteria used to select the type of battery in a microgrid, these being sufficient to ensure the economic viability of the same throughout the entire life cycle of the system. To achieve this objective, papers indexed in journals of scientific and engineering content were consulted, classifying the criteria into two groups, technical criteria, and technical-economic criteria.

Results: It was established that the technical criteria ensure compliance with the technical characteristics required by the end-user of the micro-network, but the operation of the storage system is not determined throughout the entire useful life, in contrast, the technical-economic criteria allow to guarantee the operation of the microgrid storage system throughout the entire duration of the project.

Conclusions: The classification of the criteria carried out in this paper is a guide that allows motivating the progress of research in order to establish methodologies that guarantee viable implementation costs at the microgrid level based on the technical-economic analysis of the storage system.

Keywords: Batteries, Microgrids, Storage systems..

Acknowledgements: This paper presents partial results of the research project entitled “Interoperabilidad de Microrredes” financed by the CIDC-UD year 2019.

 

Descargas

La descarga de datos todavía no está disponible.

Referencias

A. J. Cavallo, «Energy storage technologies for utility scale intermittent renewable energy systems», J. Sol. Energy Eng. Trans. ASME, 2001. https://doi.org/10.1115/1.1409556

J. A. Guacaneme, D. Velasco, y C. L. Trujillo, «Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes», Informacion Tecnologica. 2014. https://doi.org/10.4067/S0718-07642014000200020

D. W. Gao, Energy Storage for Sustainable Microgrid. 2015.

P. Denholm, E. Ela, B. Kirby, y M. Milligan, «The Role of Energy Storage with Renewable Electricity Generation», Contract, vol. NREL/, n.o January, pp. 1-53, 2010. https://doi.org/10.2172/972169

H. M. Gao y C. Wang, «A detailed pumped storage station model for power system analysis», en 2006 IEEE Power Engineering Society General Meeting, PES, 2006. https://doi.org/10.1109/PES.2006.1709259

A. Daneshi, N. Sadrmomtazi, H. Daneshi, y M. Khederzadeh, «Wind power integrated with compressed air energy storage», en PECon2010 - 2010 IEEE International Conference on Power and Energy, 2010. https://doi.org/10.1109/PECON.2010.5697658

E. K. Hussain, D. Benchebra, K. Atallah, H. S. Ooi, M. Burke, y A. Goodwin, «A flywheel energy storage system for an isolated micro-grid», en IET Conference Publications, 2014. https://doi.org/10.1049/cp.2014.0852

B. R. Alamri y A. R. Alamri, «Technical review of energy storage technologies when integrated with intermittent renewable energy», en 1st International Conference on Sustainable Power Generation and Supply, SUPERGEN '09, 2009. https://doi.org/10.1109/SUPERGEN.2009.5348055

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, y Y. Ding, «Progress in electrical energy storage system: A critical review», Progress in Natural Science. 2009. https://doi.org/10.1016/j.pnsc.2008.07.014

C. Julien, A. Mauger, A. Vijh, y K. Zaghib, Lithium Batteries: Science and Technology. 2015. https://doi.org/10.1007/978-3-319-19108-9

K. Popper y A. Hove, «Energy storage world markets report», 2017.

International Renewable Energy Agency, «Battery Storage for Renewables : Market Status and Technology Outlook», 2015.

R. Passey, T. Spooner, I. MacGill, M. Watt, y K. Syngellakis, «The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors», Energy Policy, vol. 39, n.o 10, pp. 6280-6290, 2011. https://doi.org/10.1016/j.enpol.2011.07.027

M. G. Ruíz, «Pasado, presente y futuro de vehiculos electricos», Univ. Tecnológica Pereira. Programa Ing. Eléctrica, 2015.

M. Kazmierkowski, «Handbook of Automotive Power Electronics and Motor Drives (Emadi, A.; 2006) [Book News]», IEEE Ind. Electron. Mag., 2008. https://doi.org/10.1109/MIE.2008.926483

IEC, «Executive summary.», Electr. Energy Storage White Pap., vol. 39, pp. 11-12, 2009. https://doi.org/10.1016/j.icrp.2009.12.007

D. Linden y T. B. Reddy, Handbook of Batteries, third edition. 2002.

X. Luo, J. Wang, M. Dooner, y J. Clarke, «Overview of current development in electrical energy storage technologies and the application potential in power system operation», Appl. Energy, 2015. https://doi.org/10.1016/j.apenergy.2014.09.081

J. Cho, S. Jeong, y Y. Kim, «Commercial and research battery technologies for electrical energy storage applications», Progress in Energy and Combustion Science. 2015. https://doi.org/10.1016/j.pecs.2015.01.002

B. Nykvist y M. Nilsson, «Rapidly falling costs of battery packs for electric vehicles», Nat. Clim. Chang., vol. 5, p. 329, mar. 2015. https://doi.org/10.1038/nclimate2564

S. Dhundhara, Y. P. Verma, y A. Williams, «Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems», Energy Convers. Manag., vol. 177, pp. 122-142, 2018. https://doi.org/10.1016/j.enconman.2018.09.030

W. M. Amutha y V. Rajini, «Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER», Renew. Sustain. Energy Rev., vol. 62, pp. 236-246, 2016. https://doi.org/10.1016/j.rser.2016.04.042

S. Singh, M. Singh, y S. C. Kaushik, «Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system», Energy Convers. Manag., vol. 128, pp. 178-190, 2016. https://doi.org/10.1016/j.enconman.2016.09.046

M. Usman, M. T. Khan, A. S. Rana, y S. Ali, «Techno-economic analysis of hybrid solar-diesel-grid connected power generation system», J. Electr. Syst. Inf. Technol., vol. 5, n.o 3, pp. 653-662, 2018. https://doi.org/10.1016/j.jesit.2017.06.002

A. Chauhan y R. P. Saini, «Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India», Renew. Sustain. Energy Rev., vol. 59, pp. 388-405, 2016. https://doi.org/10.1016/j.rser.2015.12.290

A. H. Mamaghani, S. A. A. Escandon, B. Najafi, A. Shirazi, y F. Rinaldi, «Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia», Renew. Energy, vol. 97, pp. 293-305, 2016. https://doi.org/10.1016/j.renene.2016.05.086

L. M. Halabi, S. Mekhilef, L. Olatomiwa, y J. Hazelton, «Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia», Energy Convers. Manag., vol. 144, pp. 322-339, 2017. https://doi.org/10.1016/j.enconman.2017.04.070

R. Rajbongshi, D. Borgohain, y S. Mahapatra, «Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER», Energy, vol. 126, pp. 461-474, 2017. https://doi.org/10.1016/j.energy.2017.03.056

P. Peerapong y B. Limmeechokchai, «Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand», Energy Reports, vol. 3, pp. 1-13, 2017. https://doi.org/10.1016/j.egyr.2016.11.001

Y. Sawle, S. C. Gupta, y A. K. Bohre, «Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system», Renew. Sustain. Energy Rev., vol. 81, pp. 2217-2235, 2018. https://doi.org/10.1016/j.rser.2017.06.033

B. Dursun, C. Gokcol, I. Umut, E. Ucar, y S. Kocabey, «Techno-Economic Evaluation of a Hybrid PV-Wind Power Generation System», Int. J. Green Energy - INT J GREEN ENERGY, vol. 10, 2012. https://doi.org/10.1080/15435075.2011.641192

A. Hiendro, R. Kurnianto, M. Rajagukguk, Y. M. Simanjuntak, y Junaidi, «Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia», Energy, vol. 59, pp. 652-657, 2013. https://doi.org/10.1016/j.energy.2013.06.005

R. Kumar, R. A. Gupta, y A. K. Bansal, «Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm», Swarm Evol. Comput., vol. 8, pp. 33-43, 2013. https://doi.org/10.1016/j.swevo.2012.08.002

B. K. Das, N. Hoque, S. Mandal, T. K. Pal, y M. A. Raihan, «A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh», Energy, vol. 134, pp. 775-788, 2017. https://doi.org/10.1016/j.energy.2017.06.024

M. K. Shahzad, A. Zahid, T. ur Rashid, M. A. Rehan, M. Ali, y M. Ahmad, «Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software», Renew. Energy, vol. 106, pp. 264-273, 2017. https://doi.org/10.1016/j.renene.2017.01.033

V. Tomar y G. N. Tiwari, «Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi - A sustainable approach», Renew. Sustain. Energy Rev., vol. 70, pp. 822-835, 2017. https://doi.org/10.1016/j.rser.2016.11.263

C. Phurailatpam, B. S. Rajpurohit, y L. Wang, «Planning and optimization of autonomous DC microgrids for rural and urban applications in India», Renew. Sustain. Energy Rev., vol. 82, pp. 194-204, 2018. https://doi.org/10.1016/j.rser.2017.09.022

S. Salehin, M. T. Ferdaous, R. M. Chowdhury, S. S. Shithi, M. S. R. B. Rofi, y M. A. Mohammed, «Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis», Energy, vol. 112, pp. 729-741, 2016. https://doi.org/10.1016/j.energy.2016.06.110

R. Sen y S. C. Bhattacharyya, «Off-grid electricity generation with renewable energy technologies in India: An application of HOMER», Renew. Energy, vol. 62, pp. 388-398, 2014. https://doi.org/10.1016/j.renene.2013.07.028

R. K. Chauhan y K. Chauhan, «Management of renewable energy source and battery bank for power losses optimization», en Smart Power Distribution Systems, Q. Yang, T. Yang, y W. Li, Eds. Elsevier, 2019, pp. 299-320. https://doi.org/10.1016/B978-0-12-812154-2.00015-8

K. Chauhan y R. K. Chauhan, «Optimization of grid energy using demand and source side management for DC microgrid», J. Renew. Sustain. Energy, vol. 9, n.o 3, p. 35101, 2017. https://doi.org/10.1063/1.4984619

J. Liu et al., «Iron fumarate as large-capacity and long-life anode material for Li-ion battery boosted by conductive Fe2P decorating», J. Alloys Compd., vol. 809, p. 151826, 2019. https://doi.org/10.1016/j.jallcom.2019.151826

X. Chen y M. Najafi, «Adsorbed Iron oxide (FeO), Lead oxide (PbO), Tellurium dioxide (TeO2) and Niobium dioxide (NbO2) to silicon nanotube (9, 0) as anode electrodes in Li- and Na-ion batteries», Solid State Ionics, vol. 341, p. 115043, 2019. https://doi.org/10.1016/j.ssi.2019.115043

R. K. Chauhan, K. Chauhan, B. R. Subrahmanyam, A. G. Singh, y M. M. Garg, «Distributed and centralized autonomous DC microgrid for residential buildings: A case study», J. Build. Eng., vol. 27, p. 100978, 2020. https://doi.org/10.1016/j.jobe.2019.100978

S. Wang, L. Lu, X. Han, M. Ouyang, y X. Feng, «Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station», Appl. Energy, vol. 259, p. 114146, 2020. https://doi.org/10.1016/j.apenergy.2019.114146

R. K. Chauhan y K. Chauhan, «Battery Monitoring and Control System for Photovoltaic based DC Microgrid», Int. J. Emerg. Electr. POWER Syst., vol. 20, n.o 6, 2019. https://doi.org/10.1515/ijeeps-2019-0133

Ribič, Pihler, Maruša, Kokalj, y Kitak, «Lead-Acid Battery Sizing for a DC Auxiliary System in a Substation by the Optimization Method», Energies, vol. 12, n.o 22, p. 4400, 2019. https://doi.org/10.3390/en12224400

E. Galvan, P. Mandal, y Y. Sang, «Networked microgrids with roof-top solar PV and battery energy storage to improve distribution grids resilience to natural disasters», Int. J. Electr. Power Energy Syst., vol. 123, p. 106239, 2020. https://doi.org/10.1016/j.ijepes.2020.106239

Q. Sun, D. Xing, H. Alafnan, X. Pei, M. Zhang, y W. Yuan, «Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications», Appl. Energy, vol. 253, p. 113529, 2019. https://doi.org/10.1016/j.apenergy.2019.113529

Y. Tian, X. Li, Y. Zhu, y R. Xia, «Optimal capacity allocation of multiple energy storage considering microgrid cost Optimal capacity allocation of multiple energy storage considering microgrid cost», vol. 1074, p. 012126, 2018. https://doi.org/10.1088/1742-6596/1074/1/012126

S. A. Pourmousavi, R. K. Sharma, y B. Asghari, «A framework for real-time power management of a grid-tied microgrid to extend battery lifetime and reduce cost of energy», 2012 IEEE PES Innov. Smart Grid Technol., pp. 1-8, 2012. https://doi.org/10.1109/ISGT.2012.6175707

M. Jarnut, S. Wermiński, y B. Waśkowicz, «Comparative analysis of selected energy storage technologies for prosumer-owned microgrids», Renew. Sustain. Energy Rev., vol. 74, pp. 925-937, 2017. https://doi.org/10.1016/j.rser.2017.02.084

I. Pawel, «The Cost of Storage - How to Calculate the Levelized Cost of Stored Energy (LCOE) and Applications to Renewable Energy Generation», Energy Procedia, vol. 46, pp. 68-77, 2014. https://doi.org/10.1016/j.egypro.2014.01.159

M. Obi, S. M. Jensen, J. B. Ferris, y R. B. Bass, «Calculation of levelized costs of electricity for various electrical energy storage systems», Renew. Sustain. Energy Rev., vol. 67, pp. 908-920, 2017. https://doi.org/10.1016/j.rser.2016.09.043

H. Hosseinnia, J. Modarresi, y D. Nazarpour, «Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program», Energy, vol. 191, p. 116553, 2020. https://doi.org/10.1016/j.energy.2019.116553

J. Asfar, A. Atieh, y R. Al-Mbaideen, «Techno-economic analysis of a microgrid hybrid renewable energy system in Jordan», J. Eur. des Systèmes Autom., vol. 52, n.o 4, pp. 415-423, 2019. https://doi.org/10.18280/jesa.520412

S. A. Sadat, J. Faraji, M. Babaei, y A. Ketabi, «Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran», Energy Sci. Eng., vol. n/a, n.o n/a.

A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. F. Mohammed, y M. A. M. Ramli, «Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq», Energy, vol. 191, p. 116591, 2020. https://doi.org/10.1016/j.energy.2019.116591

E. A. Al-Ammar et al., «Residential Community Load Management Based on Optimal Design of Standalone HRES With Model Predictive Control», IEEE Access, vol. 8, pp. 12542-12572, 2020. https://doi.org/10.1109/ACCESS.2020.2965250

F. Dawood, G. M. Shafiullah, y M. Anda, «Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen», Sustainability, vol. 12, n.o 5, 2020. https://doi.org/10.3390/su12052047

M. R. Quitoras, P. E. Campana, y C. Crawford, «Exploring electricity generation alternatives for Canadian Arctic communities using a multi-objective genetic algorithm approach», Energy Convers. Manag., vol. 210, p. 112471, 2020. https://doi.org/10.1016/j.enconman.2020.112471

T. S. Mahmoud, B. S. Ahmed, y M. Y. Hassan, «The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids: A case study from Western Australia», Energy Convers. Manag., vol. 196, pp. 1335-1352, 2019. https://doi.org/10.1016/j.enconman.2019.06.045

G. Carpinelli, F. Mottola, y D. Proto, «Probabilistic sizing of battery energy storage when time-of-use pricing is applied», Electr. Power Syst. Res., vol. 141, pp. 73-83, 2016. https://doi.org/10.1016/j.epsr.2016.07.013

S. Bahramirad, W. Reder, y A. Khodaei, «Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid», IEEE Trans. Smart Grid, vol. 3, n.o 4, pp. 2056-2062, 2012. https://doi.org/10.1109/TSG.2012.2217991

H. Bludszuweit y J. A. Dominguez-Navarro, «A Probabilistic Method for Energy Storage Sizing Based on Wind Power Forecast Uncertainty», IEEE Trans. Power Syst., vol. 26, n.o 3, pp. 1651-1658, 2011. https://doi.org/10.1109/TPWRS.2010.2089541

D. M. Greenwood, N. S. Wade, P. C. Taylor, P. Papadopoulos, y N. Heyward, «A Probabilistic Method Combining Electrical Energy Storage and Real-Time Thermal Ratings to Defer Network Reinforcement», IEEE Trans. Sustain. Energy, vol. 8, n.o 1, pp. 374-384, 2017. https://doi.org/10.1109/TSTE.2016.2600320

S. X. Chen, H. B. Gooi, y M. Q. Wang, «Sizing of Energy Storage for Microgrids», IEEE Trans. Smart Grid, vol. 3, n.o 1, pp. 142-151, 2012. https://doi.org/10.1109/TSG.2011.2160745

T. A. Nguyen, M. L. Crow, y A. C. Elmore, «Optimal Sizing of a Vanadium Redox Battery System for Microgrid Systems», IEEE Trans. Sustain. Energy, vol. 6, n.o 3, pp. 729-737, 2015. https://doi.org/10.1109/TSTE.2015.2404780

S. Sukumar, H. Mokhlis, S. Mekhilef, K. Naidu, y M. Karimi, «Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid», Energy, vol. 118, pp. 1322-1333, 2017. https://doi.org/10.1016/j.energy.2016.11.018

J. P. Fossati, A. Galarza, A. Martín-Villate, y L. Fontán, «A method for optimal sizing energy storage systems for microgrids», Renew. Energy, vol. 77, pp. 539-549, 2015. https://doi.org/10.1016/j.renene.2014.12.039

L. Guo, W. Liu, B. Jiao, B. Hong, y C. Wang, «Multi-objective stochastic optimal planning method for stand-alone microgrid system», IET Gener. Transm. Distrib., vol. 8, n.o 7, pp. 1263-1273(10), 2014. https://doi.org/10.1049/iet-gtd.2013.0541

M. Sufyan, N. A. Rahim, M. M. Aman, C. K. Tan, y S. R. S. Raihan, «Sizing and applications of battery energy storage technologies in smart grid system: A review», J. Renew. Sustain. Energy, vol. 11, n.o 1, p. 14105, ene. 2019. https://doi.org/10.1063/1.5063866

Cómo citar
Trujillo Rodríguez, C. L., Peña Suesca, R. A., & Santos León, A. I. (2020). Análisis de los Sistemas de Almacenamiento Basados en Baterías para Microrredes Eléctricas . Ingeniería, 25(3). https://doi.org/10.14483/23448393.15613
Publicado: 2020-10-02
Sección
Ingeniería Eléctrica y Electrónica

Artículos más leídos del mismo autor/a