Implementación de algoritmos basados en máquinas de soporte vectorial (SVM) para sistemas eléctricos: revisión de tema

Implementation of algorithms based on support vector machine (SVM) for electric systems: topic review

  • Jefferson Jara Estupiñan Universidad Distrital Francisco José De Caldas
  • Diego Giral Universidad Distrital Francisco José De Caldas
  • Fernando Martínez Santa Universidad Distrital Francisco José de Caldas
Palabras clave: Algorithms, machine learning, support vector machines, electricity. (en_US)
Palabras clave: Algoritmos, aprendizaje de máquina, máquinas de soporte vectorial, electricidad. (es_ES)

Resumen (es_ES)

Objetivo: Realizar una revisión sobre la implementación de algoritmos basados en máquinas de soporte vectorial para sistemas eléctricos.

Método: Se realiza una búsqueda de artículos principalmente en Índices bibliográficos (IB) y Bases Bibliográficas con Comité de Selección (BBCS) acerca de las máquinas de soporte vectorial. En este trabajo presenta una descripción cualitativa y/o cuantitativa acerca de los avances y aplicaciones en el entorno eléctrico, abordando temas como: predicción del mercado eléctrico, predicción de la demanda, perdidas no técnicas de electricidad (hurto), energías alternativas, trasformadores, entre otros, en cada trabajo se realiza la respectiva citación con el fin de garantizar los derechos de autor y permitirle al lector el movimiento dinámico entre lo consignado en este trabajo y los trabajos citados .

Resultados: Se realiza la revisión de una manera detallada, centrando la búsqueda en algoritmos implementados en sistemas eléctricos y en área de aplicación novedosas.

Conclusión: Las máquinas de soporte vectorial tiene bastantes aplicaciones debido a sus múltiples beneficios, sin embargo, en el área de energía eléctrica los campos de exploración no se han desarrollado en su totalidad, esto permite identificar un área prometedora de trabajos de investigación.

Resumen (en_US)

Objective: To perform a review of implementation of algorithms based on support vectore machine applied to electric systems.

Method: A paper search is done mainly on Biblio­graphic Indexes (BI) and Bibliographic Bases with Selection Committee (BBSC) about support vector machine. This work shows a qualitative and/or quan­titative description about advances and applications in the electrical environment, approaching topics such as: electrical market prediction, demand predic­tion, non-technical losses (theft), alternative energy source and transformers, among others, in each work the respective citation is done in order to guarantee the copy right and allow to the reader a dynamic mo­vement between the reading and the cited works.

Results: A detailed review is done, focused on the searching of implemented algorithms in electric sys­tems and innovating application areas.

Conclusion: Support vector machines have a lot of applications due to their multiple benefits, however in the electric energy area; they have not been tota­lly applied, this allow to identify a promising area of researching.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jefferson Jara Estupiñan, Universidad Distrital Francisco José De Caldas
Estudiante de tecnología en electricidad. Universidad Distrital Francisco José De Caldas, Bogotá.
Diego Giral, Universidad Distrital Francisco José De Caldas

Ingeniero eléctrico, Magister en Ingeniería Eléctrica. Docente Universidad Distrital Francisco José De Caldas, Bogotá.

Fernando Martínez Santa, Universidad Distrital Francisco José de Caldas

Ingeniero electrónico, magíster en Ingeniera Electrónica y de Computadores. Docente de la Universidad Distrital Francisco José de Caldas, Bogotá.

Referencias

Ali Shiriz, Mohammad Afsharx, A. R.-K. and B. M., & zSNL/CIPCE, School of Electrical and Computer Engineering, C. of E. (2015). Electricity Price Forecasting Using Support Vector Machines by Considering Oil and Natural Gas Price Impacts, 2–6.

Antonanzas, F.; Urraca, R.; Antonanzas, J.; Fernandez, J. y Martinez-de-Pison, F.J. (2015). Generation of Daily Global Solar Irradiation with Support Vector Machines for Regression. Energy Conversion and Management, 96, 277–286. http://doi.org/10.1016/j.enconman.2015.02.086

Ashkezari, A.D.; Ma, H.; Saha, T.K. y Ekanayake, C. (2013). Application of Fuzzy Support Vector Machine for Determining the Health Index of the Insulation System of In-Service Power Transformers. Dielectrics and Electrical Insulation, IEEE Transactions on, 20(3), 965–973. http://doi.org/10.1109/TDEI.2013.6518966

Bessedik, S.A. y Hadi, H. (2013). Prediction of Flashover Voltage of Insulators Using Least Squares Support Vector Machine with Particle Swarm Optimisation. Electric Power Systems Research, 104, 87–92. http://doi.org/10.1016/j.epsr.2013.06.013

Betancour, G. (2005). Las máquinas de soporte vectorial (SVM). Scientia Et Technica, 27, 67–72.

Biswal, B.; Biswal, M.K.; Dash, P.K. y Mishra, S. (2013). Power Quality Event Characterization Using Support Vector Machine and Optimization Using Advanced Immune Algorithm. Neurocomputing, 103, 75–86. http://doi.org/10.1016/j.neucom.2012.08.031

Che, J. y Wang, J. (2010). Short-Term Electricity Prices Forecasting Based on Support Vector Regression and Auto-Regressive Integrated Moving Average Modeling. Energy Conversion and Management, 51(10), 1911–1917. http://doi.org/10.1016/j.enconman.2010.02.023

Dangar, B. y Joshi, S.K. (2015). Electricity Theft Detection Techniques for Metered Power Consumer in Guvnl, Gujarat, India. 2015 Clemson University Power Systems Conference (PSC) (pp. 1–6). Clemson. http://doi.org/10.1109/PSC.2015.7101683

Elsamahy, M. y Babiy, M. (2012). An Intelligent Approach Using SVM to Enhance Turn-To-Turn Fault Detection in Power Transformers. 2012 IEEE Electrical Power and Energy Conference (pp. 255-260). Londres. http://doi.org/10.1109/EPEC.2012.6474961

Faisal, M.F. y Mohamed, A. (2009). Identification of Sources of Voltage Sags in the Malaysian Distribution Networks Using SVM Based S-Transform. TENCON 2009 - 2009 IEEE Region 10 Conference (pp. 1–6). Singapur. http://doi.org/10.1109/TENCON.2009.5395940

Gao, C.; Bompard, E.; Napoli, R. y Cheng, H. (2007). Price Forecast in the Competitive Electricity Market by Support Vector Machine. Physica A: Statistical Mechanics and Its Applications, 382(1), 98–113. http://doi.org/10.1016/j.physa.2007.03.050

Goddard, J.; Silva, G.; Pérez, R. y Ángel M. (2000). Un algoritmo para el entrenamiento de máquinas de vector soporte para regresión. Revista de Matemática: Teoría y Aplicaciones 2000, 7(1-2), 107–116.

Jokar, P.; Arianpoo, N. y Leung, V.C.M. (2015). Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Transactions on Smart Grid, 7(1), 216–226. http://doi.org/10.1109/TSG.2015.2425222

Kavaklioglu, K. (2011). Modeling and Prediction of Turkey’s Electricity Consumption Using Support Vector Regression. Applied Energy, 88(1), 368–375. http://doi.org/10.1016/j.apenergy.2010.07.021

Klass, V.; Behm, M. y Lindbergh, G. (2014). A Support Vector Machine-Based State-Of-Health Estimation Method for Lithium-Ion Batteries Under Electric Vehicle Operation. Journal of Power Sources, 270, 262–272. http://doi.org/10.1016/j.jpowsour.2014.07.116

Kong, X.; Liu, X.; Shi, R. y Lee, K.Y. (2015). Wind Speed Prediction Using Reduced Support Vector Machines with Feature Selection. Neurocomputing, 169, 449–456. http://doi.org/10.1016/j.neucom.2014.09.090

Liu, Q.; Yang, M.; Lei, J.; Jin, H.; Gao, Z. y Wang, Y. (2012). Modeling and Optimizing Parabolic Trough Solar Collector Systems Using the Least Squares Support Vector Machine Method. Solar Energy, 86(7), 1973–1980. http://doi.org/10.1016/j.solener.2012.01.026

Loizos, G. y Passadis, K. (2009). Core Power Losses Estimation of Wound Core Distribution Transformers with Support Vector Machines. 16th International Conference on Systems, Signals and Image Processing (pp. 1-4). Chalkida.

Luo, T.; Hall, L.O.; Goldgof, D.B. y Remsen, A. (2005). Bit Reduction Support Vector Machine. Proceedings - IEEE International Conference on Data Mining, ICDM, 733–736. http://doi.org/10.1109/ICDM.2005.36

Ma, Y.; Zhang, X.; Xu, M. y Xie, S. (2013). Hybrid Model Based on Preisach and Support Vector Machine for Novel Dual-Stack Piezoelectric Actuator. Mechanical Systems and Signal Processing, 34(1-2), 156–172. http://doi.org/10.1016/j.ymssp.2012.05.015

Manimala, K.; Selvi, K. y Ahila, R. (2012). Optimization Techniques for Improving Power Quality Data Mining Using Wavelet Packet Based Support Vector Machine. Neurocomputing, 77(1), 36–47. http://doi.org/10.1016/j.neucom.2011.08.010

Mehta, A.K.; Sharma, R.N.; Chauhan, S. y Saho, S. (2013). Transformer Diagnostics under Dissolved Gas Analysis Using Support Vector Machine. Power, Energy and Control (ICPEC), 2013 International Conference (pp. 181–186). Dindigul.

Mohammadi, K.; Shamshirband, S.; Tong, C.W.; Arif, M.; Petković, D. y Sudheer, C. (2015). A New Hybrid Support Vector Machine-Wavelet Transform Approach for Estimation of Horizontal Global Solar Radiation. Energy Conversion and Management, 92, 162–171. http://doi.org/10.1016/j.enconman.2014.12.050

Nagi, J.; Yap, K.S.; Tiong, S.K.; Ahmed, S.K. y Mohamad, M. (2010). Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines. IEEE Transactions on Power Delivery, 25(2), 1162–1171. http://doi.org/10.1109/TPWRD.2009.2030890

Ngaopitakkul, A.; Pothisarn, C.; Bunjongjit, S. y Suechoey, B. (2012). An Application of Discrete Wavelet Transform and Support Vector Machines Algorithm for Classification of Fault Types on Underground Cable. Proceedings - 3rd International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2012 (pp. 85–88). Kaohsiung. http://doi.org/10.1109/IBICA.2012.21

Osman, Z.H.; Awad, M.L. y Mahmoud, T. K. (2009). Neural Network Based Approach for Short-Term Load Forecasting. 2009 IEEE/PES Power Systems Conference and Exposition (pp. 1–8). Seattle. http://doi.org/10.1109/PSCE.2009.4840035

Papadimitriou, T.; Gogas, P. y Stathakis, E. (2014). Forecasting Energy Markets Using Support Vector Machines. Energy Economics (pp. 135–142). http://doi.org/10.1016/j.eneco.2014.03.017

Pinto, T.; Ramos, S.; Sousa, T.M. y Vale, Z. (2014). Short-Term Wind Speed Forecasting Using Support Vector Machines. Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 2014 IEEE Symposium (pp. 40-46). Orlando

Pinto, T.; Sousa, T.M.; Praa, I.; Vale, Z. y Morais, H. (2016). Support Vector Machines for Decision Support in Electricity Markets’ Strategic Bidding. Neurocomputing, 172, 438–445. http://doi.org/10.1016/j.neucom.2015.03.102

Qu, H.; Oussar, Y.; Dreyfus, G. y Xu, W. (2009). Regularized Recurrent Least Squares Support Vector Machines. 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing (pp. 508–511). Shanghái. http://doi.org/10.1109/IJCBS.2009.58

Resendiz T., J.; Yu, W. y Li, X. (2006). Support Vector Machine for Nonlinear System On-line Identification. 2006 3rd International Conference on Electrical and Electronics Engineering pp. 1-4. Veracruz.

Shamshirband, S.; Mohammadi, K.; Khorasanizadeh, H.; Yee, P.L.; Lee, M.; Petković, D. y Zalnezhad, E. (2016). Estimating the Diffuse Solar Radiation Using a Coupled Support Vector Machine-Wavelet Transform Model. Renewable and Sustainable Energy Reviews, 56, 428–435. http://doi.org/10.1016/j.rser.2015.11.055

Shekara, S.; Reddy, S.; Wang, L. y Devabhaktuni, V. (2011). Support Vector Machine Based Data Classification for Detection of Electricity Theft. IEEE/PES Power Systems Conference and Exposition (PSCE) (pp. 1–8). Phoenix

Shrivastava, N.A.; Khosravi, A. y Panigrahi, B.K. (2015). Prediction Interval Estimation of Electricity Prices using PSO tuned Support Vector Machines. IEEE Transactions on Industrial Informatics, 11(2), 1–1. http://doi.org/10.1109/TII.2015.2389625

Shrivastava, N.A.; Khosravi, A.; Panigrahi, B.K. y Memeber, S. (2014). Prediction Interval Estimation for Electricity Price and Demand Using Support Vector Machines. IEEE Transactions on Industrial Informatics, 11(2), 322-331.

Siahkali, H. (2008). Power Quality Indexes for Continue and Discrete Disturbances in a Distribution Area. PECon 2008 - 2008 IEEE 2nd International Power and Energy Conference, (PECon 08) (pp. 678–683). Johor Bahru. http://doi.org/10.1109/PECON.2008.4762561

Sun, C., & Gong, D. (2006). Support Vector Machines with PSO Algorithm for Short-Term Load Forecasting. 2006 IEEE International Conference on Networking, Sensing and Control, 676–680. http://doi.org/10.1109/ICNSC.2006.1673227

Susukh, J., Premrudeepreechacharn, S., & Kasirawat, T. (2009). Power quality problem classification using support vector machine. 2009 6th International Conference on Electrical EngineeringElectronics Computer Telecommunications and Information Technology, 01, 2–5. http://doi.org/10.1109/ECTICON.2009.5136965

Swief, R. a., Hegazy, Y. G., Abdel-Salam, T. S., & Bader, M. . (2009). Support vector machines (SVM) based short term electricity load-price forecasting. 2009 IEEE Bucharest PowerTech, 1–5. http://doi.org/10.1109/PTC.2009.5281886

Turkay, B. E., & Demren, D. (2011). Electrical load forecasting using support vector machines. Electrical and Electronics Engineering (ELECO), 2011 7th International Conference on, I–49–I–53.

Wang, Y., & Yu, S. (2008). with Least Squares Support Vector Machines, (April), 714–719.

Xie, L., & Zheng, H. (2013). Demand elasticity analysis by least squares support vector machine. Proceedings of the 2013 6th International Congress on Image and Signal Processing, CISP 2013, 2(Cisp), 1085–1089. http://doi.org/10.1109/CISP.2013.6745217

Xydas, E. S., Marmaras, C. E., Cipcigan, L. M., Hassan, A. S., & Jenkins, N. (2013). Forecasting Electric Vehicle charging demand using Support Vector Machines. 2013 48th International Universities’ Power Engineering Conference (UPEC), 1–6. http://doi.org/10.1109/UPEC.2013.6714942

Yan, X., & Chowdhury, N. A. (2013). Mid-term Electricity Market Clearing Price Forecasting Using Multiple Support Vector Machine. 2013 4th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1–5.

Yang, S. X., & Wang, Y. (2007). Applying support vector machine method to forecast electricity consumption. 2006 International Conference on Computational Intelligence and Security, ICCIAS 2006, 1, 929–932. http://doi.org/10.1109/ICCIAS.2006.294275

Yan-Gao, C. Y.-G. C., & Guangwen, M. G. M. (2009). Electricity Price Forecasting Based on Support Vector Machine Trained by Genetic Algorithm. 2009 Third International Symposium on Intelligent Information Technology Application, 2, 293–296. http://doi.org/10.1109/IITA.2009.96

Yucheng, L. y Yubin, L. (2010). Incremental Learning Method of Least Squares Support Vector Machine. 2010 International Conference on Intelligent Computation Technology and Automation, 1, 529–532. Recuperado de: http://doi.org/10.1109/ICICTA.2010.104

Zeng, J. y Qiao, W. (2013). Short-Term Solar Power Prediction Using a Support Vector Machine. Renewable Energy, 52, 118–127. http://doi.org/10.1016/j.renene.2012.10.009

Zhang, J., Han, J., Wang, R., & Hou, G. (2011). Day-ahead electricity price forecasting based on rolling time series and least square-support vector machine model. 2011 Chinese Control and Decision Conference (CCDC), 1065–1070. http://doi.org/10.1109/CCDC.2011.5968342

Zhang, X.; Huang, R.; Yao, S.; Li, G.; Zhong, L. y Wang, X. (2015). Mechanical Life Prognosis of High Voltage Circuit Breakers Based on Support Vector Machine. Natural Computation (ICNC), 2015 11th International Conference (pp. 749-753). Zhangjiajie

Zhang, X. Z. X., Chen, X. C. X., Liu, H. L. H., & Zhao, B. Z. B. (2008). Application of integrated weight method and support vector machine in the comprehensive evaluation of power quality. 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, (20060294019), 2181–2186. http://doi.org/10.1109/DRPT.2008.4523772

Zhang, Y.; Ilic, M. y Tonguz, O. (2007). Application of Support Vector Machine Classification to Enhanced Protection Relay Logic in Electric Power Grids. Power Engineering, 2007 Large Engineering Systems Conference (pp. 31-38). Recuperado de: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4437348

Zhu, F. (2005). Classification of Power Quality Disturbances Using, (August), 18–21. http://doi.org/10.3906/elk-1112-51

Guo-Sheng Hu, Jing Xie and Feng-Feng Zhu, "Classification of power quality disturbances using wavelet and fuzzy support vector machines," 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005, pp. 3981-3984 Vol. 7.

Zhu, Y.-L.; Zhao, W.-Q.; Zhai, X.-M. y Zhang, X.-Q. (2007). A Fault Prediction Approach for Power Transformer Based on Support Vector Machine. Wavelet Analysis and Pattern Recognition, 2007. ICWAPR ’07. International Conference on, 4, 1457–1461. http://doi.org/10.1109/ICWAPR.2007.4421679

Cómo citar
Jara Estupiñan, J., Giral, D., & Martínez Santa, F. (2016). Implementación de algoritmos basados en máquinas de soporte vectorial (SVM) para sistemas eléctricos: revisión de tema. Tecnura, 20(48), 149-170. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a11
Publicado: 2016-04-01
Sección
Revisión

Artículos más leídos del mismo autor/a