DOI:

https://doi.org/10.14483/23448350.20095

Publicado:

2023-01-02

Número:

Vol. 46 Núm. 1 (2023): Enero-Abril 2023

Sección:

Ingeniería y Tecnología

Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL

Rubric Based on Learning Outcomes for a CS1 Course to CSCL Programming Activities

Autores/as

Palabras clave:

collaborative learning, CS1 programming course, technology education, learning outcomes assessment, computer programming (en).

Palabras clave:

aprendizaje colaborativo, curso de programación CS1, educación tecnológica, evaluación de resultados de aprendizaje, programación de computadores (es).

Descargas

Resumen (es)

Los cursos programación (CS1) tienen la tasa de mortalidad académica más alta, esto se refleja en las bajas calificaciones de los estudiantes, lo que indica que no alcancen las competencias académicas. Buscando nuevas formas de mejorar el aprendizaje de los estudiantes del curso CS1, este artículo propone una rúbrica analítica basada en competencias académicas para actividades de programación colaborativa respaldada por una herramienta de evaluación automática de código fuente que permita mejorar las calificaciones y alcanzar las competencias propuestas en el curso. Se diseñó una rúbrica con 16 criterios de evaluación que se dividieron en tres actividades que fueron presentadas por un grupo experimental (GE) de 18 estudiantes y un grupo de control (GC) de 24 estudiantes. En el GE se usó la colaboración entre estudiantes, mientras que en el GC los estudiantes trabajan de manera individual. Luego de finalizar las actividades, usando una rúbrica, se evaluaron las entregas de cada estudiante para identificar si logra los resultados de aprendizaje esperados por el curso. Los resultados demuestran que el uso de la colaboración mejora la adquisición de las competencias de aprendizaje en un 17 % más que si lo hacen de manera individual. Además, se destacan otras habilidades sociales asociadas a la colaboración, como amistad, motivación y entendimiento grupal. El desarrollo de estrategias que permita evaluar las competencias, no solo indica que el estudiante logra adquirir una habilidad, sino que también permite al estudiante identificar sus falencias en las tareas de programación.

Resumen (en)

Programming courses (CS1) have the highest academic mortality rate, this is reflected in the low grades of the students, which indicates that the students do not reach the academic competencies. In this sense, looking for new ways to improve the learning of the students of the CS1 course, this article proposes an analytical rubric based on academic competencies for collaborative programming activities supported by an automatic source code evaluation tool that allows to improve the qualifications and reach the competencies proposed in the course. A rubric was designed with 16 evaluation criteria that were divided into three activities which were presented by an experimental group (EG) of 18 students and a control group (CG) of 24 students. In the GE, a collaboration between students was used, while in the CG, students work individually. After finishing the activities, using an analytical rubric, the deliveries of each student were evaluated to identify if they achieved the learning results expected by the course. The results show that the use of collaboration achieves that students manage to win a learning competition in 17 % more than if they do it individually. In addition, other social skills associated with collaboration are highlighted, such as friendship, motivation and group understanding. The development of strategies that allow to evaluate the competences, not only indicate that the student manages to acquire a skill, but also allows the student to identify their shortcomings in the programming tasks.

Referencias

Alhazbi, S., Hassanh, M. (2013). Fostering self-regulated learning in introductory computer programming course. En WCCCE 2013: Western Canadian Conference on Computing Education.

Allen, S., Knight, J. (2009). A method for collaboratively developing and validating a rubric. International Journal for the Scholarship of Teaching and Learning, 3(2), e210. https://doi.org/10.20429/ijsotl.2009.030210

Allen, D., Tanner, K. (2006). Rubrics: Tools for making learning goals and evaluation criteria explicit for both teachers and learners. CBE—Life Sciences Education, 5(3), 197-203. https://doi.org/10.1187/cbe.06-06-0168

Ayala, G., Ortiz, M., Osorio, M. (2005). Agent modelling for CSCL environments using answer sets programming. En Sixth Mexican International Conference on Computer Science (ENC’05), 214-221. https://doi.org/10.1109/ENC.2005.9

Bhuyan, M. H., Tamir, A. (2020). Evaluating COs of computer programming course for OBE-based BSc in EEE program. International Journal of Learning and Teaching, 12(2), 86-99. https://doi.org/10.18844/ijlt.v12i2.4576

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., Koller, D. (2014). Programming pluralism: Using learning analytics to detect patterns in the learning of computer programming. Journal of the Learning Sciences, 23(4), 561-599. https://doi.org/10.1080/10508406.2014.954750

Böhne, A., Faltin, N., Wagner, B. (2007). Distributed group work in a remote programming laboratory—A comparative study. International Journal of Engineering Education, 23(1), 162-170

Carbonaro, A. (2019). Good practices to influence engagement and learning outcomes on a traditional introductory programming course. Interactive Learning Environments, 27(7), 919-926. https://doi.org/10.1080/10494820.2018.1504307

Carvajal-Ortiz, L., Florian-Gaviria, B., Díaz, J. F. (s.f.). Modelos, métodos y prototipo de software para el apoyo del diseño, evaluación y análisis de aprendizajes en gestión curricular de la educación superior basada en competencias.

Cateté, V., Snider, E., Barnes, T. (2016). Developing a rubric for a creative CS principles lab. En Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, 290-295. https://doi.org/10.1145/2899415.2899449

Chen, J., Wang, M., Kirschner, P. A., Tsai, C.-C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799-843. https://doi.org/10.3102/0034654318791584

Chen, Y.-H., Lee, W.-C., Tseng, C.-H., Deng, L. Y., Chang, C.-Y., Lee, L.-H. (2020). Cognitive learning performance assessment and analysis with CSCL applied on the NetGuru platform and CSPL applied on the TAoD platform for the network experiment class. Journal of Supercomputing, 76(1), 16-46. https://doi.org/10.1007/s11227-019-02836-3

Clancy, M., Titterton, N., Ryan, C., Slotta, J., Linn, M. (2003). New roles for students, instructors, and computers in a lab-based introductory programming course. ACM SIGCSE Bulletin, 35(1), 132-136. https://doi.org/10.1145/792548.611951

Collins, D., Weber, J., Zambrano, R. (2014). Teaching business ethics online: Perspectives on course design, delivery, student engagement, and assessment. Journal of Business Ethics, 125, 513-529. https://doi.org/10.1007/s10551-013-1932-7

Coto, M., Mora, S., Collazos, C. (2014). Evaluation of the collaboration process from an individual and collaborative perspective. En Proceedings of the XV International Conference on Human Computer Interaction, 1-9. https://doi.org/10.1145/2662253.2662342

Demaidi, M. N., Qamhieh, M., Afeefi, A. (2019). Applying blended learning in programming courses. IEEE Access, 7, 156824-156833. https://doi.org/10.1109/ACCESS.2019.2949927

Dümmel, N., Westfechtel, B., Ehmann, M. (2018). Effects of a preliminary programming course on students’ performance. ECSEE’18: Proceedings of the 3rd European Conference of Software Engineering Education, 77-86. https://doi.org/10.1145/3209087.3209088

Fiesler, C., Garrett, N., Beard, N. (2020). What do we teach when we teach tech ethics? A syllabi analysis. En Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 289-295. https://doi.org/10.1145/3328778.3366825

Fleming, D. L. (2008). Using best practices in online discussion and assessment to enhance collaborative learning. College Teaching Methods & Styles Journal, 4(10), e5573. https://doi.org/10.19030/ctms.v4i10.5573

García Retana, J. Á. (2011). Modelo educativo basado en competencias: importancia y necesidad. Actualidades Investigativas en Educación, 11(3), e10225. https://doi.org/10.15517/aie.v11i3.10225

Goss, H. (2022). Student learning outcomes assessment in higher education and in academic libraries: A review of the literature. The Journal of Academic Librarianship, 48(2). https://doi.org/10.1016/j.acalib.2021.102485

Hidalgo, C., Bucheli, V. (2019). Modelo soportado en inteligencia artificial para el desarrollo de actividades de aprendizaje activo basadas en colaboración asistida por computador (M-IDEA). En 17th LACCEI International Multi-Conference for Engineering, Education, and Technology.

Hidalgo, C. G., Bucheli, V. A., Restrepo, F., González, F. A. (2021). Estrategia de enseñanza basada en la colaboración y la evaluación automática de código fuente en un curso de programación CS1. Investigación e Innovación en Ingenierías, 9(1), e4185. https://doi.org/10.17081/invinno.9.1.4185

Kardan, A., Sadeghi, H. (2015). Modeling the learner group formation problem in computer-supported collaborative learning using mathematical programming. En 8th National and 5th International Conference on E-Learning and e-Teaching. https://doi.org/10.1109/ICELET.2014.7040616

Kilgour, P., Northcote, M., Williams, A., Kilgour, A. (2020). A plan for the co-construction and collaborative use of rubrics for student learning. Assessment & Evaluation in Higher Education, 45(1), 140-153. https://doi.org/10.1080/02602938.2019.1614523

Lakas, A., Belkacem, A. N. (2021). A framework for course-embedded assessment for evaluating learning outcomes of a network programming course. En IEEE Global Engineering Education Conference, 989-995. https://doi.org/10.1109/EDUCON46332.2021.9454129

Lämsä, J., Uribe, P., Jiménez, A., Caballero, D., Hämäläinen, R., Araya, R. (2021). Deep networks for collaboration analytics: Promoting automatic analysis of face-to-face interaction in the context of inquiry-based learning. Journal of Learning Analytics, 8(1), e7118. https://doi.org/10.18608/jla.2021.7118

Lee, G., Fong, W. W., Gordon, J. (2013). Blended learning: The view is different from student, teacher, or institution perspective. En Lecture Notes in Computer Science (LNCS, 8038, pp. 356-363). https://doi.org/10.1007/978-3-642-39750-9_33

Llanos, J. M., Hidalgo, C. G., Bucheli, V. A. (2022). Strategy based on computer-supported collaborative learning to form workgroups automatically in an introductory programming course (CS1). Revista Facultad de Ingeniería, 31(61), e14368. https://doi.org/10.19053/01211129.v31.n61.2022.14368

Means, B., Toyama, Y., Murphy, R., Bakia, M., Jones, K. (2009). Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies [Grade Thesis]. Centre for Learning Technology, Reino Unido. https://repository.alt.ac.uk/629/

Mehennaoui, Z., Lafifi, Y., Seridi, H., Boudria, A. (2014). A new approach for grouping learners in CSCL systems. En International Conference on Multimedia Computing and Systems, 628-632. https://doi.org/10.1109/ICMCS.2014.6911143

Michel, N., Cater, J. J., Varela, O. (2009). Active versus passive teaching styles: An empirical study of student learning outcomes. Human Resource Development Quarterly, 20(4), 397-418. https://doi.org/10.1002/hrdq.20025

Mustapha, A., Samsudin, N. A., Arbaiy, N., Mohammed, R., Hamid, I. R. (2016). Generic assessment rubrics for computer programming courses. Turkish Online Journal of Educational Technology - TOJET, 15(1), 53-68

OECD iLibrary. (s.f.). Assessment of learning outcomes in higher education: A comparative review of selected practices. OECD Education Working Papers. https://www.oecd-ilibrary.org/content/paper/244257272573

Palmer, M. S., Bach, D. J., Streifer, A. C. (2014). Measuring the promise: A learning-focused syllabus rubric. To Improve the Academy, 33(1), 14-36. https://doi.org/10.1002/tia2.20004

Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A., Alshehri, M. (2019). Early dropout prediction for programming courses supported by online judges. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. McLaren, & R. Luckin (Eds.), Artificial Intelligence in Education (vol. 11626, pp. 67-72). Springer. https://doi.org/10.1007/978-3-030-23207-8_13

Powell, L. M., Wimmer, H. (2015). Evaluating the effectiveness of self-created student screencasts as a tool to increase student learning outcomes in a hands-on computer programming course. Information Systems Education Journal, 13(5), 106-111

Sadler, D. R. (2016). Three in-course assessment reforms to improve higher education learning outcomes. Assessment & Evaluation in Higher Education, 41(7), 1081-1099. https://doi.org/10.1080/02602938.2015.1064858

Saito, D., Yajima, R., Washizaki, H., Fukazawa, Y. (2021). Validation of rubric evaluation for programming education. Education Sciences, 11(10), e656. https://doi.org/10.3390/educsci11100656

Saunders, L. (2012). Faculty perspectives on information literacy as a student learning outcome. The Journal of Academic Librarianship, 38(4), 226-236. https://doi.org/10.1016/j.acalib.2012.06.001

Stahl, G., Koschmann, T., Suthers, D. (2006). Computer-Supported Collaborative Learning: An Historical Perspective

Tiantong, M., Teemuangsai, S. (2013). Student team achievement divisions (STAD) technique through the moodle to enhance learning achievement. International Education Studies, 6(4), 85-92. https://doi.org/10.5539/ies.v6n4p85

TrainCom. (s.f.). Indicators of achievement. http://train-com.de/traincom/english/competency/achievement.rsys

Wei, X., Saab, N., Admiraal, W. (2021). Assessment of cognitive, behavioral, and affective learning outcomes in massive open online courses: A systematic literature review. Computers & Education, 163, e104097. https://doi.org/10.1016/j.compedu.2020.104097

Zlatkin-Troitschanskaia, O., Pant, H. A., Coates, H. (2016). Assessing student learning outcomes in higher education: Challenges and international perspectives. Assessment & Evaluation in Higher Education, 41(5), 655-661. https://doi.org/10.1080/02602938.2016.1169501

Cómo citar

APA

Hidalgo-Suarez, C.-G., Bucheli-Guerrero, V.-A., y Ordoñez-Erazo, H.-A. (2023). Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL. Revista Científica, 46(1), 134–146. https://doi.org/10.14483/23448350.20095

ACM

[1]
Hidalgo-Suarez, C.-G., Bucheli-Guerrero, V.-A. y Ordoñez-Erazo, H.-A. 2023. Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL. Revista Científica. 46, 1 (ene. 2023), 134–146. DOI:https://doi.org/10.14483/23448350.20095.

ACS

(1)
Hidalgo-Suarez, C.-G.; Bucheli-Guerrero, V.-A.; Ordoñez-Erazo, H.-A. Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL. Rev. Cient. 2023, 46, 134-146.

ABNT

HIDALGO-SUAREZ, C.-G.; BUCHELI-GUERRERO, V.-A.; ORDOÑEZ-ERAZO, H.-A. Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL. Revista Científica, [S. l.], v. 46, n. 1, p. 134–146, 2023. DOI: 10.14483/23448350.20095. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/20095. Acesso em: 31 ene. 2023.

Chicago

Hidalgo-Suarez, Carlos-Giovanny, Víctor-Andrés Bucheli-Guerrero, y Hugo-Armando Ordoñez-Erazo. 2023. «Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL». Revista Científica 46 (1):134-46. https://doi.org/10.14483/23448350.20095.

Harvard

Hidalgo-Suarez, C.-G., Bucheli-Guerrero, V.-A. y Ordoñez-Erazo, H.-A. (2023) «Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL», Revista Científica, 46(1), pp. 134–146. doi: 10.14483/23448350.20095.

IEEE

[1]
C.-G. Hidalgo-Suarez, V.-A. Bucheli-Guerrero, y H.-A. Ordoñez-Erazo, «Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL», Rev. Cient., vol. 46, n.º 1, pp. 134–146, ene. 2023.

MLA

Hidalgo-Suarez, C.-G., V.-A. Bucheli-Guerrero, y H.-A. Ordoñez-Erazo. «Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL». Revista Científica, vol. 46, n.º 1, enero de 2023, pp. 134-46, doi:10.14483/23448350.20095.

Turabian

Hidalgo-Suarez, Carlos-Giovanny, Víctor-Andrés Bucheli-Guerrero, y Hugo-Armando Ordoñez-Erazo. «Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL». Revista Científica 46, no. 1 (enero 2, 2023): 134–146. Accedido enero 31, 2023. https://revistas.udistrital.edu.co/index.php/revcie/article/view/20095.

Vancouver

1.
Hidalgo-Suarez C-G, Bucheli-Guerrero V-A, Ordoñez-Erazo H-A. Rúbrica basada en competencias de aprendizaje en un curso CS1 para evaluar actividades de programación CSCL. Rev. Cient. [Internet]. 2 de enero de 2023 [citado 31 de enero de 2023];46(1):134-46. Disponible en: https://revistas.udistrital.edu.co/index.php/revcie/article/view/20095

Descargar cita

Visitas

3

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.