DOI:

https://doi.org/10.14483/23448350.23083

Published:

09/27/2025

Issue:

Vol. 52 No. 1 (2025): January-April 2025

Section:

Research Articles

Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming

Marketing basado en cuentas en el sector ferroviario: un enfoque de optimización con K-means9++w y programación lineal

Authors

Keywords:

K-means, linear programming,, railway industry, Account Based Marketing, ABM, marketing management, optimization (en).

Keywords:

K-means, programación lineal, industria ferroviaria, marketing basado en cuentas, gestión de marketing, optimización (es).

Downloads

Abstract (en)

This article proposes an optimized approach for account-based marketing (ABM) in the railway sector, utilizing a variant of the K-means algorithm, dubbed K-means 9++w, as well as linear programming. The methodology integrates the CRISP-DM model and the K-means++ initialization strategy to overcome computational inefficiency and suboptimal initialization of traditional algorithms. This study analyzed data from various sources, such as railway track length, passenger and freight transport, and per capita GDP. The results demonstrate the effectiveness of Chebyshov and weighted Euclidean distance metrics in data processing and variable evaluation. Crucially, the proposed weighted Euclidean distance showed a superior performance, achieving the highest silhouette coefficient (0.3807) and the lowest Davies-Bouldin index (0.8174) in comparison with traditional distance variants. ABM optimization through automatic rules yielded time savings, while the normalization of scattered data improved coherence and computational performance. The implications of this study indicate the global potential of the railway construction campaign and a significant potential for the railway sector in Colombia. Our analysis of the findings, carried out with a global dataset, validates the model's applicability to the expansion of a B2B company beyond its local market. The limitations include the availability of public data and time and budget constraints.

Abstract (es)

Este artículo propone un enfoque optimizado para el marketing basado en cuentas (ABM) en el sector ferroviario, utilizando una variante del algoritmo K-means, denominada K-means 9++w, y la programación lineal. La metodología integra el modelo CRISP-DM y la estrategia de inicialización K-means++ para superar la ineficiencia computacional y la inicialización subóptima de los algoritmos tradicionales. Este estudio analizó datos de diversas fuentes, como la longitud de las vías férreas, el transporte de pasajeros y carga, y el PIB per cápita. Los resultados demuestran la efectividad de las distancias Chebyshov y Euclidiana ponderada en el procesamiento y la evaluación de variables. De manera crucial, la distancia Euclidiana ponderada propuesta mostró un rendimiento superior, logrando el coeficiente de silueta más alto (0.3807) y el índice Davies-Bouldin más bajo (0.8174) en comparación con las variantes de distancia tradicionales. La optimización de ABM a través de reglas automáticas produjo un ahorro de tiempo, mientras que la normalización de datos dispersos mejoró la coherencia y el rendimiento computacional. Las implicaciones del estudio indican el potencial de la campaña de construcción de vías férreas a nivel global y un potencial significativo para el sector ferroviario en Colombia. El análisis de los hallazgos, realizado con un conjunto de datos global, valida la aplicabilidad del modelo en la expansión de una empresa B2B más allá de su mercado local. Las limitaciones incluyen la disponibilidad de datos públicos y las restricciones de tiempo y presupuesto.

References

Abdulnassar, A. A., & Nair, L. R. (2023). Performance analysis of Kmeans with modified initial centroid selection algorithms and developed Kmeans9+ model. Measurement: Sensors, 25, 100666. https://doi.org/10.1016/J.MEASEN.2023.100666

Account-based marketing budgets demystified: Findings from SiriusDecisions’ latest study. (2019). https://www.forrester.com/blogs/abm-budgets-study-findings/

Ayele, W. Y. (2020). Adapting CRISP-DM for idea mining a data mining process for generating ideas using a textual dataset. International Journal of Advanced Computer Science and Applications, 11(6), 3. https://doi.org/10.14569/IJACSA.2020.0110603

Bereg, S., Haghpanah, M., Malouf, B., & Sudborough, I. H. (2024). Improved bounds for permutation arrays under Chebyshev distance. Designs, Codes, and Cryptography, 92(4), 1023-1039. https://doi.org/10.1007/S10623-023-01326-1/TABLES/5

Burgess, B. (2025). Account-based marketing: The definitive handbook for B2B marketers. Kogan Page.

Buzzell, G. A., Niu, Y., Aviyente, S., & Bernat, E. (2022). A practical introduction to EEG time-frequency principal components analysis (TF-PCA). Developmental Cognitive Neuroscience, 55, 101114. https://doi.org/10.1016/J.DCN.2022.101114

Central Intelligence Agency (CIA) (2024). The world factbook. https://www.cia.gov/the-world-factbook/

Chikumbo, O., & Granville, V. (2019). Optimal clustering and cluster identity in understanding high-dimensional data spaces with tightly distributed points. Machine Learning and Knowledge Extraction, 1(2), 715-744. https://doi.org/10.3390/MAKE1020042

Colombian National Planning Department (2020). APP-Sector férreo (2020). https://colaboracion.dnp.gov.co/CDT/Participacin%20privada%20en%20proyectos%20de%20infraestrucu/Gu%C3%ADa%20APP%20Sector%20F%C3%A9rreo.pdf

Cuevas-Díaz Durán, R., Wei, H., & Wu, J. (2024). Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets. BMC Genomics, 25(1), 1-18. https://doi.org/10.1186/S12864-024-10364-5

Fabri, G., Ometto, A., Li, H., & d’Ovidio, G. (2024). Redesign of a non-electrified urban railway line with hydrogenfuelled trains. Lecture Notes in Civil Engineering, 526, 640-648. https://doi.org/10.1007/978981-97-4355-1_62

Figueroa, A. E. N., Castellanos, G. C., & Sanabria, J. S. G. (2023). Modelo de machine learning para la clasificación de municipios por cultivos ilícitos en Colombia de 2010 a 2020. Inge CuC, 19(1), 47-60. https://doi.org/10.17981/INGECUC.19.1.2023.05

Findeter (2020). Metro de Medellín tendrá dos nuevos trenes y llega el primero de los 20 que habían sido comprados| Findeter.

https://www.findeter.gov.co/noticias/infraestructura/metro-de-medell%C3%ADn-tendrá-dos-nuevos-trenes-y-llega-el-primero-de-los-20-que-hab%C3%ADan-sido-comprados#

Forrester Research (2019). Account-based marketing budgets demystified: Findings from SiriusDecisions’ latest study.https://www.forrester.com/blogs/abm-budgets-study-findings/

Gene Day, D., & Wei Shi, S. (2020). Automated and scalable: Account-based B2B marketing for startup companies. Journal of Business Theory and Practice, 8(2), 16-23. https://doi.org/10.22158/jbtp.v8n2p16

Gobierno de Colombia. (2020, November). Plan maestro ferroviario. https://colaboracion.dnp.gov.co/CDT/Prensa/Plan-Maestro-Ferroviario.pdf

Hernández Sampieri, R., Feránadez Collado, C., & Baptista Lucio, M. D. P. (2014). Metodología de la investigación. McGraw Hill España. https://dialnet.unirioja.es/servlet/libro?codigo=775008&info=resumen&idioma=SPA

Karam, A., Jensen, A. J. K., & Hussein, M. (2023). Analysis of the barriers to multimodal freight transport and their mitigation strategies. European Transport Research Review, 15(1), 1-16. https://doi.org/10.1186/S12544-023-00614-0/METRICS

Lenssen, L., & Schubert, E. (2023). Medoid silhouette clustering with automatic cluster number selection. Information Systems, 120, 102290. https://doi.org/10.1016/j.is.2023.102290

Li, X., Shi, H., Yang, K., Dou, Q., & Jia, N. (2025). Ground fault insulation monitoring method for smart substation based on Mahalanobis distance and automatic code generation. Energy Informatics, 8(1), 22. https://doi.org/10.1186/S42162-025-00470-3

Ling, L. S., & Weiling, C. T. (2025). Enhancing segmentation: A comparative study of clustering methods. IEEE Access, 13, 47418-47439. https://doi.org/10.1109/ACCESS.2025.3550339

Makarychev, K., Reddy, A., & Shan, L. (2020). Improved Guarantees for k-means++ and k-means++ Parallel. In H. Larochelle, M. Ranzato, R. Hadzel, & H. Lin (Eds.), Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (pp. 1-11). NEurIPS. https://proceedings.neurips.cc/paper_files/paper/2020/hash/ba304f3809ed31d0ad97b5a2b5df2a39-Abstract.html

Ministry of Transportation (2019). En Colombia, cada año cerca de 670 mil personas usan el tren como medio de transporte. https://mintransporte.gov.co/publicaciones/7286/en-colombia-cada-ano-cerca-de-670-mil-personasusan-el-tren-como-medio-de-transporte/

Ministry of the Environment (2024). MinAmbiente presenta borrador de decreto para impulsar transporte ferroviario en ciudades del país. https://www.minambiente.gov.co/minambiente-presenta-borrador-de-decreto-paraimpulsar-transporte-ferroviario-en-ciudades-del-pais/

Ren, Y., Yang, M., Chen, E., Cheng, L., & Yuan, Y. (2024). Exploring passengers’ choice of transfer city in air-to-rail intermodal travel using an interpretable ensemble machine learning approach. Transportation, 51(4), 1493-1523. https://doi.org/10.1007/S11116-023-10375-3/FIGURES/7

RENFE (2023). Renfe licita la compra de 149 vagones para mercancías. https://www.renfe.com/es/es/grupo-renfe/comunicacion/renfe-al-dia/sala-de-prensa/renfe-licita-la-compra-de-vagones-para-mercancias

Rubiños, M., Díaz-Longueira, A., Timiraos, M., Michelena, Á., García-Ordás, M. T., & Alaiz-Moretón, H. (2024). A Comparative Analysis of Algorithms and Metrics to Perform Clustering. Lecture Notes in Networks and Systems,1173, 63-72. https://doi.org/10.1007/978-3-031-73910-1_7

Saura, J. R., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2021). Setting B2B digital marketing in artificial intelligencebased CRMs: A review and directions for future research. Industrial Marketing Management, 98, 161-178. https://doi.org/10.1016/J.INDMARMAN.2021.08.006

United Nations (UN) (2024). Member States | United Nations. https://www.un.org/en/about-us/member-states

United Nations Economic Commission for Europe (UNECE) (2024). Data portal. https://w3.unece.org/PXWeb/en

Universidad Oberta de Catalunya (2024). Espacio de recursos de ciencia de datos. https://datascience.recursos.uoc.edu/es/optimizacion-con-pulp/

Vaquer, A. J. (2023). Aplicación de la programación lineal en el planeamiento de la producción de una acería. South Florida Journal of Development, 4(4), 1623-1638. https://doi.org/10.46932/sfjdv4n4-015

Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/J.JJIMEI.2020.100002

World Bank (2024a). Superficie (kilómetros cuadrados) | Data. https://datos.bancomundial.org/indicador/AG.SRF.TOTL.K2

World Bank (2024b). PIB per cápita (US$ a precios actuales) | Data. https://datos.bancomundial.org/indicador/NY.GDP.PCAP.CD

World Bank (2024c). Individuos que utilizan Internet (% de la población) | Data. https://datos.bancomundial.org/indicador/IT.NET.USER.ZS

World Population Review (2024). Rail usage by country 2024. https://worldpopulationreview.com/country-rankings/rail-usage-by-country

How to Cite

APA

Díaz Peñuela, C. E., Cáceres-Castellanos, G., and Ballesteros-Ricaurte, J.-A. (2025). Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming. Revista Científica, 52(1), 51–72. https://doi.org/10.14483/23448350.23083

ACM

[1]
Díaz Peñuela, C.E. et al. 2025. Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming. Revista Científica. 52, 1 (Sep. 2025), 51–72. DOI:https://doi.org/10.14483/23448350.23083.

ACS

(1)
Díaz Peñuela, C. E.; Cáceres-Castellanos, G.; Ballesteros-Ricaurte, J.-A. Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming. Rev. Cient. 2025, 52, 51-72.

ABNT

DÍAZ PEÑUELA, Carlos Eduardo; CÁCERES-CASTELLANOS, Gustavo; BALLESTEROS-RICAURTE, Javier-Antonio. Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming. Revista Científica, [S. l.], v. 52, n. 1, p. 51–72, 2025. DOI: 10.14483/23448350.23083. Disponível em: https://revistas.udistrital.edu.co/index.php/revcie/article/view/23083. Acesso em: 30 dec. 2025.

Chicago

Díaz Peñuela, Carlos Eduardo, Gustavo Cáceres-Castellanos, and Javier-Antonio Ballesteros-Ricaurte. 2025. “Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming”. Revista Científica 52 (1):51-72. https://doi.org/10.14483/23448350.23083.

Harvard

Díaz Peñuela, C. E., Cáceres-Castellanos, G. and Ballesteros-Ricaurte, J.-A. (2025) “Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming”, Revista Científica, 52(1), pp. 51–72. doi: 10.14483/23448350.23083.

IEEE

[1]
C. E. Díaz Peñuela, G. Cáceres-Castellanos, and J.-A. Ballesteros-Ricaurte, “Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming”, Rev. Cient., vol. 52, no. 1, pp. 51–72, Sep. 2025.

MLA

Díaz Peñuela, Carlos Eduardo, et al. “Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming”. Revista Científica, vol. 52, no. 1, Sept. 2025, pp. 51-72, doi:10.14483/23448350.23083.

Turabian

Díaz Peñuela, Carlos Eduardo, Gustavo Cáceres-Castellanos, and Javier-Antonio Ballesteros-Ricaurte. “Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming”. Revista Científica 52, no. 1 (September 27, 2025): 51–72. Accessed December 30, 2025. https://revistas.udistrital.edu.co/index.php/revcie/article/view/23083.

Vancouver

1.
Díaz Peñuela CE, Cáceres-Castellanos G, Ballesteros-Ricaurte J-A. Account-Based Marketing in the Railway Sector: An Optimization Approach with K-means 9++w and Linear Programming. Rev. Cient. [Internet]. 2025 Sep. 27 [cited 2025 Dec. 30];52(1):51-72. Available from: https://revistas.udistrital.edu.co/index.php/revcie/article/view/23083

Download Citation

Visitas

46

Dimensions


PlumX


Downloads

Download data is not yet available.

Most read articles by the same author(s)

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
No
11%
Metric
This journal
Other journals
Articles accepted 
37%
33%
Days to publication 
290
145

Indexed in

Editor & editorial board
profiles
Loading...