DOI:

https://doi.org/10.14483/23448393.17945

Published:

2022-08-12

Issue:

Vol. 27 No. 3 (2022): September-December

Section:

Environmental Engineering

Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión

Alternatives to Treat Sludge from Sewage Treatment Plants: A Review

Authors

Keywords:

alternativas convencionales, deshidratación, espesamiento, estabilización, nuevas alternativas, tratamiento de lodos (es).

Keywords:

conventional alternatives, dehydration, thickening, stabilization, new alternatives, sludge treatment (en).

Abstract (es)

Contexto: La investigación han demostrado la eficiencia de diversos tratamientos para lodos. Sin embargo, se han presentado nuevas alternativas que ameritan una revisión actualizada. Es por ello que este trabajo tiene como objetivo realizar dicha actualización con respecto a técnicas convencionales y nuevas para tratar los lodos.

Método: Este artículo está basado en una revisión de documentos en diversas bases de datos, agrupando en primera instancia las alternativas convencionales y posteriormente las nuevas, constituidas ambas por alternativas de técnicas de espesamiento, estabilización y deshidratación de lodos, y analizándolas con base en criterios económicos, técnicos y ambientales.

Resultados: En este estudio se encontró que la ósmosis directa es una de las alternativas más prometedoras en el espesamiento de lodos, la oxidación de agua supercrítica y la pirólisis en la estabilización y la filtración al vacío en la deshidratación de dichos subproductos.

Conclusiones: Este artículo permitió la revisión actualizada de alternativas convencionales y nuevas para el tratamiento de lodos, observando que, tanto en el espesamiento como en la estabilización, las nuevas alternativas tienen eficiencias altas, mientras la filtración al vacío, una alternativa convencional, mejoró su rendimiento mediante el uso del floculante modificado, destacándose en la deshidratación de lodos. Es por ello que se requieren más investigaciones que mejoren los desafíos y rendimientos presentes e indaguen sobre la liberación al ambiente de contaminantes al utilizar los biosólidos.

Abstract (en)

Context: Research has shown the efficiency of various treatments for sludge. However, new alternatives have been presented which merit an updated review. That is why this work aims to carry out said update with regard to conventional and new techniques to treat sludge.

Method: The article is based on a review of documents in various databases, first grouping the conventional alternatives and later the new ones, both consisting of alternatives of sludge thickening, stabilization, and dewatering techniques, and analyzing them based on economic, technical, and environmental criteria.

Results: This study found that direct osmosis is one of the most promising alternatives in sludge thickening, supercritical water oxidation, and pyrolysis in stabilization and vacuum filtration during the dehydration of said byproducts.

Conclusions: This article allowed an updated review of conventional and new alternatives for sludge treatment, observing that, both in thickening and stabilization, the new alternatives are highly efficient, whereas vacuum filtration, a conventional alternative, improved its performance through the use of modified flocculants, standing out in the dehydration of sludge. This is why more research is required which improve the current challenges and yields and inquire into the release of pollutants into the environment when using biosolids.

References

J. Hu et al., “Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review”, Environ. Res., vol. 188, 2020. https://doi.org/10.1016/j.envres.2020.109764

W. Zhang, Y. Xu, B. Dong, and X. Dai, “Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches”, Sci. Total Environ., vol. 675, pp. 184-191, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.095

M. B. Flandes y J. L. Soto, “Comparación de distintos métodos de secado (3) para lodos, de la planta de tratamiento de aguas residuales de San Jerónimo, del municipio de Purísima del Rincón, GTO”, Jóvenes cienc., vol. 3, pp. 350-356, 2017. [En línea]. http://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/2314/1802

H. Du, and F. Li, “Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge”, Chemosphere, vol. 168, pp. 1022-1031, 2017. https://doi.org/10.1016/j.chemosphere.2016.10.108

Y. Chen, H. Chen, J. Li, and L. Xiao, “Rapid and efficient activated sludge treatment by electro-Fenton oxidation”, Water Res., vol. 152, pp. 181-190, 2019. https://doi.org/10.1016/j.watres.2018.12.035

M. Schnell, T. Horst, and P. Quicker, “Thermal treatment of sewage sludge in Germany: A review”, J. Environ. Manage., vol. 263, 2020. https://doi.org/10.1016/j.jenvman.2020.110367

A. Amador-Díaz, E. Veliz-Lorenzo y M. Bataller-Venta, “Tratamiento de lodos, generalidades y aplicaciones”, CENIC, vol. 46, 2015. [En línea]. https://www.redalyc.org/pdf/1816/181642434003.pdf

A. Peña, Balances de materia a una línea de lodos de una EDAR urbana, Trabajo de pregrado, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, España, 2019. [En línea]. https://core.ac.uk/download/pdf/232122808.pdf

S. E. Garrido, “Optimización de los procesos de tratamiento de residuos provenientes de la remoción de arsénico en agua para consumo humano”, Instituto Mexicano de Tecnología del Agua, México, Informe técnico, 2019. [En línea]. http://repositorio.imta.mx/bitstream/handle/20.500.12013/2159/DP-1627.5.pdf

R. Cayo, “Evaluación de la eficiencia de Caesalpinia Spinosa (goma de tara) y polímero catiónico sintético (Polydadmac) en el espesamiento de lodos por gravedad”, VII Congreso Nacional de Investigación, Perú, 2018. [En línea]. http://eventoscientificos.upeu.edu.pe/index.php/viiconacin/vii_conacin/paper/view/4473

C. Cagnetta et al., “High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery”, Bioresour. Technol., vol. 291, 2019. https://doi.org/10.1016/j.biortech.2019.121833

J. Suárez, A. Jácome y P. Ures, Tecnologías de deshidratación de fangos, Ficha técnica, Universidade da Coruña, La Coruña, España, 2015.

S. Semiyaga, M. Okure, C. Niwagaba, P. Nyenje, and F. Kanssime, “Optimization of centrifuge operating conditions for dewatering physically conditioned fecal sludge from urban slums”, Environ. Technol. Innov., vol. 8, pp. 28-39, 2017. https://doi.org/10.1016/j.eti.2017.03.005

B. Chatterjee, and D. Mazumder, “Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: A review”, Environ. Rev., vol. 24, no. 4, pp. 426-459, 2016. https://doi.org/10.1139/er-2015-0077

P. C. Lau, D. C. L Teo, and M. A. Mannan, “Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash”, Constr. Build. Mater., vol. 152, pp. 558-567, 2017. https://doi.org/10.1016/j.conbuildmat.2017.07.022

V. Cortés et al., Diseño de un sistema de tratamiento de aguas residuales para el 70% de la cabecera municipal de Cajamarca, Tolima, Trabajo de pregrado, Facultad de Ingeniería, Pontificia Universidad Javeriana, Cali, Colombia, 2017.

M. G. Healy et al., “Metal concentrations in lime stabilized, thermally dried and anaerobically digested sewage sludges”, Waste Manage., vol. 48, pp. 404-408, 2016. https://doi.org/10.1016/j.wasman.2015.11.028

Y. Zhang et al., “Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials”, Bioresour. Technol., vol. 218, pp. 867-873, 2016. https://doi.org/10.1016/j.biortech.2016.07.045

K. Sharma, and V. K. Garg, “Vermicomposting of Waste: A Zero-Waste Approach for Waste Management”, M. J. Taherzadeh, K. Bolton, J. Wong, and A. Pandey (Eds.), Sustainable Resource Recovery and Zero Waste Approaches (pp. 133-164), Elsevier, 2019.

K. Malińska, M. Zabochnicka, R. Cáceres, and O. Marfà, “The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting”, Ecol. Eng., vol. 90, pp. 35-41, 2016. https://doi.org/10.1016/j.ecoleng.2016.01.042

B. Lv, Y. Cui, H. Wei, Q. Chen, and D. Zhang, “Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw”, J. Hazard. Mater., vol. 400, 2020. https://doi.org/10.1016/j.jhazmat.2020.123215

S. L. Lim, L. H. Lee, and T. Y. Wu, “Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis”, J. Clean Prod., vol. 111, pp. 262-278, 2016. https://doi.org/10.1016/j.jclepro.2015.08.083

R. Solera, M. Pérez y D. Sales, “Biodegradación anaerobia de lodos y residuos agroalimentarios”, Sem@foro, no. 66, pp. 58-60, 2018. [En línea]. https://www.semicrobiologia.org/wp-content/uploads/2021/04/25-Especial-Lodos.pdf

X. Mei, J. Tang, and Y. Zhang, “Sludge stabilization: Characteristics of the end-products and an alternative evaluative methodology”, Waste Manage., vol. 105, pp. 355-363, 2020. https://doi.org/10.1016/j.wasman.2020.02.027

P. Foladori, M. Vaccari, and F. Vitali, “Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned”, Water Sci. Technol., vol. 72, no. 6, pp. 1007-1015, 2015. https://doi.org/10.2166/wst.2015.306

S. Bahar, and A.S Ciggin, “A simple kinetic modeling approach for aerobic stabilization of real waste activated sludge”, Chem. Eng. J. vol. 303, pp. 194-201, 2016. https://doi.org/10.1016/j.cej.2016.05.149

X. Zhu, W. Yuan, Z. Wu, X. Wang, and X. Zhang, “New insight into sludge digestion mechanism for simultaneous sludge thickening and reduction using flat-sheet membrane-coupled aerobic digesters”, Chem. Eng. J., vol. 309, pp. 41-48, 2017. https://doi.org/10.1016/j.cej.2016.10.014

S. Teoh, and L. Y. Li, “Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective”, J. Clean Prod., vol. 247, 2020. https://doi.org/10.1016/j.jclepro.2019.119495

M. C. Tomei, D. Mosca, G. Mascolo, and U. Kunkel, “Post-aerobic treatment to enhance the removal of conventional and emerging micropollutants in the digestion of waste sludge”, Waste Manage., vol. 96, pp. 36-46, 2019. https://doi.org/10.1016/j.wasman.2019.07.013

M. Kumar et al., “Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting”, Bioresour. Technol., vol. 247, pp. 970-979, 2018. https://doi.org/10.1016/j.biortech.2017.09.201

M. Kumar et al., “Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost”, Waste Manage., vol. 68, pp. 760-773, 2017. https://doi.org/10.1016/j.wasman.2017.06.008

C. P. Chien et al., “A review on the global warming potential of cleaner composting and mitigation strategies”, J. Clean Prod., vol. 146, pp. 149-157, 2017. https://doi.org/10.1016/j.jclepro.2016.07.066

Y. Yang, M. Kumar, X. Ren, H. Guo, and J. Lv, “Effect of bean dregs on nitrogen transformation and bacterial dynamics during pig manure composting”, Bioresour. Technol., vol. 288, 2019. https://doi.org/10.1016/j.biortech.2019.121430

D. Elalami et al., “Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends”, Renew. Sust. Energ. Rev., vol. 114, 2019. https://doi.org/10.1016/j.rser.2019.109287

M. C. Torres, Propuesta para el aprovechamiento de los lodos generados en la PTAR de la empresa regional Aguas del Tequendama, Trabajo de pregrado, Facultad de Ingenierías, Fundación Universidad de América, Bogotá, Colombia, 2017. [En línea]. https://repository.uamerica.edu.co/handle/20.500.11839/6593

L. S. Tang, D. H. Zheng, Z. L. Zhao, and L. J. Zhang, “Dehydration of sludge using the polyethylene glycol solution dialysis method and the mechanism of dehydration”, J. Environ. Sci. Health, Part A, vol. 53, no. 14, pp. 1199-1206, 2018. https://doi.org/10.1080/10934529.2018.1528009

E. A. Medrano, Diagnóstico y evaluación de la laguna de oxidación de la comunidad de Montoro a fin de reducir el impacto ambiental y la contaminación de la zona, Trabajo de posgrado, Centro de Ciencias del Diseño y de la Construcción Aguascalientes, Universidad Autónoma de Aguascalientes, México, 2018. [En línea].

http://bdigital.dgse.uaa.mx:8080/xmlui/handle/11317/1564

J. Castellanos, N. Merchán, J. Galvis y E. Manjarres, “Deshidratación de los lodos en lecho de secado y su influencia sobre la actividad biológica de los microorganismos”, Gest. Ambient., vol. 21, no. 2, pp. 242-251, 2018. https://doi.org/10.15446/ga.v21n2.75876

D. Santos, E. Teshima, S. Dias, R. Araújo y C. Silva, “Efeito da secagem em leito nas características físico-químicas e microbiológicas de lodo de reator anaeróbio de fluxo ascendente usado no tratamento de esgoto sanitário”, Eng. Sanit. Ambient., vol. 22, no. 2, pp. 341-349, 2017. https://doi.org/10.1590/S1413-41522016100531

J. Zhang et al., “The study of Na2SiO3 as conditioner used to deep dewater the urban sewage dewatered sludge by filter press”, Sep. Purif. Technol., vol. 174, pp. 331-337, 2017. https://doi.org/10.1016/j.seppur.2016.11.004

Y. Andrade y L. Castro, Diseño hidráulico de una planta de tratamiento de agua residual en el hospital nuevo del municipio de Zipaquirá Colombia, Trabajo de pregrado, Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia, 2017. [En línea].

https://repository.ucatolica.edu.co/bitstream/10983/15258/1/Dise%C3%B1o%20hidraulico%20de%20una%20PTAR%20ZIPAQUIRA.pdf

M. Huttunen et al., “Specific energy consumption of cake dewatering with vacuum filters”, Miner. Eng., vol. 100, pp. 144-154, 2017. https://doi.org/10.1016/j.mineng.2016.10.025

G. González y L. Prado, Elaboración de equipo piloto a escala para el tratamiento de lodos residuales para determinar el porcentaje de humedad y la eficiencia del método, Trabajo de pregrado, Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil, Ecuador, 2019. [En línea]. http://repositorio.ug.edu.ec/handle/redug/42636

S. Hu, and Z. Chen, “Earthworm effects on biosolids characteristics in sludge treatment wetlands”, Ecol. Eng., vol. 118, pp. 12-18, 2018. https://doi.org/10.1016/j.ecoleng.2018.04.016

S. Hu et al., “Drained water quality in sludge treatment wetlands: Effects of earthworm densities and plant species”, J. Clean Prod., vol. 247, 2020. https://doi.org/10.1016/j.jclepro.2019.119128

S. Wang et al., “Deciphering of organic matter and nutrient removal and bacterial community in three sludge treatment wetlands under different operating conditions”, J. Environ. Manage., vol. 260, 2020. https://doi.org/10.1016/j.jenvman.2020.110159

S. M. Iskander, S. Zou, B. Brazil, J. T. Novak, and Z. He, “Energy consumption by forward osmosis treatment of landfill leachate for water recovery”, Waste Manage., vol. 63, pp. 284-291, 2017. http://dx.doi.org/10.1016/j.wasman.2017.03.026

F. Sun, D. Lu, J. Shin, T. Haur, and Y. Zhou, “Mitigation of membrane fouling in a seawater-driven forward osmosis system for waste activated sludge thickening”, J. Clean Prod., vol. 241, 2019. https://doi.org/10.1016/j.jclepro.2019.118373

A. Ding et al., “In situ coagulation versus pre-coagulation for gravity-driven membrane bioreactor during decentralized sewage treatment: Permeability stabilization, fouling layer formation and biological activity”, Water Res., vol. 126, pp. 197-207, 2017. https://doi.org/10.1016/j.watres.2017.09.027

H. Wei, B. Gao, J. Ren, A. Li, and H. Yang, “Coagulation/flocculation in dewatering of sludge: A review”, Water Res., vol. 143, pp. 608-631, 2018. https://doi.org/10.1016/j.watres.2018.07.029

G. Han, Z. Cheng, and T. Chung, “Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes”, J. Membr. Sci., vol. 523, pp. 497-504, 2017. https://doi.org/10.1016/j.memsci.2016.10.022

D. Y. Fan, B. Wu, Y. Chen, Z. Dong, and R. Wang, “A novel thin film composite hollow fiber osmotic membrane with one-step prepared dual-layer substrate for sludge thickening”, J. Membr. Sci, vol. 575, pp. 98-108, 2019. https://doi.org/10.1016/j.memsci.2019.01.007

Y. Liu, L. Ding, B. Wang, Q. He, and D. Wang, “Using the modified pine wood as a novel recyclable bulking agent for sewage sludge composting: Effect on nitrogen conversion and microbial community structures”, Bioresour. Technol, vol. 309, 2020. https://doi.org/10.1016/j.biortech.2020.123357

B. Pacheco, Evaluación del proceso de biotransformación de biosólidos procedentes de la planta de tratamiento de agua residual de Tunja - Boyacá, mediante compostaje con adición de larvas de escarabajos, Trabajo de posgrado, Universidad Santo Tomás, Tunja, Colombia, 2019.

F. Zhang et al., “Energy consumption and exergy analyses of a supercritical water oxidation system with a transpiring wall reactor”, Energy Conv. Manag., vol. 145, pp. 82-92, 2017. https://doi.org/10.1016/j.enconman.2017.04.082

Z. Yan, B. Örmeci, Y. Han, and J. Zhang, “Supercritical water oxidation for treatment of wastewater sludge and recalcitrant organic contaminants”, Environ. Technol. Inno., vol. 18, 2020. https://doi.org/10.1016/j.eti.2020.100728

L. Qian et al., “Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation”, Bioresour. Technol., vol. 176, pp. 218-224, 2015. https://doi.org/10.1016/j.biortech.2014.10.125

E. Adar, M. Ince, and M. Sinan, “Supercritical water gasification of sewage sludge by continuous flow tubular reactor: A pilot scale study”, Chem. Eng. J., vol. 391, 2020. https://doi.org/10.1016/j.cej.2019.123499

E. Adar, B. Karatop, M. İnce, and M. Sinan, “Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis”, Renew. Sust. Energ. Rev., vol. 62, pp. 429-440, 2016. https://doi.org/10.1016/j.rser.2016.05.007

Q. Zeng et al., “Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide”, Water Res., vol. 166, 2019. https://doi.org/10.1016/j.watres.2019.115035

N. Shivasankaran, A. V. Balan, S. P. Sankar, S. Magibalan, and C. M. Dinesh, “Removal of hydrogen sulphide and odour from tannery & textile effluents”, Mater Today Proc., vol. 21, no. 1, pp. 777-781, 2020. https://doi.org/10.1016/j.matpr.2019.07.242

G. Zhou, Y. Gu, H. Yuan, Y. Gong, and Y. Wu, “Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China”, Resour. Conserv. Recy., vol. 161, 2020. https://doi.org/10.1016/j.resconrec.2020.104881

M. I. García, Tratamiento de lodos residuales provenientes de plantas de tratamiento de aguas residuales mediante procesos electroquímicos para la disminución de la concentración de coliformes fecales y totales, Trabajo de pregrado, Universidad Politécnica Salesiana del Ecuador, Cuenca, Ecuador, 2016. [En línea]. https://dspace.ups.edu.ec/bitstream/123456789/12044/1/UPS-CT005866.pdf

Z. Yin, M. Hoffmann, and S. Jiang, “Sludge disinfection using electrical thermal treatment: The role of ohmic heating”, Sci. Total Environ., vol. 615, pp. 262-271, 2018. https://doi.org/10.1016/j.scitotenv.2017.09.175

X. Liu et al., “Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China”, Appl. Therm. Eng., vol. 128, pp. 464-470, 2018. https://doi.org/10.1016/j.applthermaleng.2017.08.091

D. Barry, C. Barbiero, C. Briens, and F. Berruti “Pyrolysis as an economical and ecological treatment option for municipal sewage sludge”, Biomass Bioenerg., vol. 122, pp. 472-480, 2019. https://doi.org/10.1016/j.biombioe.2019.01.041

S. Nanda, A. K. Dalai, F. Berruti, and J. A. Kozinski., “Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials”, Waste Biomass., vol. 7, pp. 201-235, 2016. https://doi.org/10.1007/s12649-015-9459-z

A. Zaker, Z. Chen, X. Wang, and Q. Zhang, “Microwave-assisted pyrolysis of sewage sludge: A review”, Fuel Process. Technol., vol. 187, pp. 84-104, 2019. https://doi.org/10.1016/j.fuproc.2018.12.011

J. Rumky et al., “Electro-dewatering treatment of sludge: Assessment of the influence on relevant indicators for disposal in agriculture”, J. Environ. Manage., vol. 268, 2020. https://doi.org/10.1016/j.jenvman.2020.110689

H. Lv et al., “Effects of temperature variation on wastewater sludge electro-dewatering”, J. Clean Prod., vol. 214, pp. 873-880, 2019. https://doi.org/10.1016/j.jclepro.2019.01.033

G. Vilardi, I. Bavasso, M. Scarsella, N. Verdone, and L. Di Palma, “Fenton oxidation of primary municipal wastewater treatment plant sludge: process modelling and reactor scale-up”, Process Saf. Environ. Protect., vol. 140, pp. 46-59, 2020. https://doi.org/10.1016/j.psep.2020.05.002

M. C. Amie, K. Kai, S. Peng, and Y. Zhang, “Sludge dewaterability by dual conditioning using Fenton’s reagent with Moringa oleifera”, J. Environ. Chem. Eng., vol. 7, no. 1, 2019. https://doi.org/10.1016/j.jece.2018.102838

N. Ding et al., “Improving the dewaterability of citric acid wastewater sludge by Fenton treatment”, J. Clean Prod., vol. 196, pp. 739-746, 2018. https://doi.org/10.1016/j.jclepro.2018.06.139

J. Guo, and C. Chen, “Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability”, Chemosphere, vol. 185, pp. 277-283, 2017. https://doi.org/10.1016/j.chemosphere.2017.06.111

Y. Wu et al., “Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride”, Bioresour. Technol., vol. 205, pp. 258-263, 2016. https://doi.org/10.1016/j.biortech.2016.01.020

J. Li et al., “Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water”, Desalin. Water Treat., vol. 57, no. 10, pp. 4681-4693, 2016. https://doi.org/10.1080/19443994.2014.994104

Z. Guo et al., “Dewatering performance of sewage sludge under pretreatment with modified corn-core powder”, Sci. Total Environ., vol. 684, pp. 402-412, 2019. https://doi.org/10.1016/j.scitotenv.2019.05.366

S. W. Puasa, K. N. Ismail, M. Z. A. Musman, and N.A. Sulong, “Enhanced oily sludge dewatering using plant-based surfactant technology”, Mater Today Proc., vol. 19, no. 4, pp. 1159-1165, 2019. https://doi.org/10.1016/j.matpr.2019.11.009

R. Guan et al., “Functionality of surfactants in waste-activated sludge treatment: A review”, Sci. Total Environ., vol. 609, pp. 1433-1442, 2017. https://doi.org/10.1016/j.scitotenv.2017.07.189

C. Hong, Z. Wang, Y. Si, Q. Yang, and Y, Xing, “Improving sludge dewaterability by combined conditioning with Fenton’s reagent and surfactant”, Appl. Microbiol. Biotechnol., vol. 101, pp. 809-816, 2017. https://doi.org/10.1007/s00253-016-7939-0

How to Cite

APA

Cárdenas Torrado, G., & Molina Pérez, F. J. . (2022). Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería, 27(3), e17945. https://doi.org/10.14483/23448393.17945

ACM

[1]
Cárdenas Torrado, G. and Molina Pérez, F.J. 2022. Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería. 27, 3 (Aug. 2022), e17945. DOI:https://doi.org/10.14483/23448393.17945.

ACS

(1)
Cárdenas Torrado, G.; Molina Pérez, F. J. . Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ing. 2022, 27, e17945.

ABNT

CÁRDENAS TORRADO, G.; MOLINA PÉREZ, F. J. . Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería, [S. l.], v. 27, n. 3, p. e17945, 2022. DOI: 10.14483/23448393.17945. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/17945. Acesso em: 26 sep. 2022.

Chicago

Cárdenas Torrado, Geraldine, and Francisco José Molina Pérez. 2022. “Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión”. Ingeniería 27 (3):e17945. https://doi.org/10.14483/23448393.17945.

Harvard

Cárdenas Torrado, G. and Molina Pérez, F. J. . (2022) “Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión”, Ingeniería, 27(3), p. e17945. doi: 10.14483/23448393.17945.

IEEE

[1]
G. Cárdenas Torrado and F. J. . Molina Pérez, “Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión”, Ing., vol. 27, no. 3, p. e17945, Aug. 2022.

MLA

Cárdenas Torrado, G., and F. J. . Molina Pérez. “Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión”. Ingeniería, vol. 27, no. 3, Aug. 2022, p. e17945, doi:10.14483/23448393.17945.

Turabian

Cárdenas Torrado, Geraldine, and Francisco José Molina Pérez. “Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión”. Ingeniería 27, no. 3 (August 12, 2022): e17945. Accessed September 26, 2022. https://revistas.udistrital.edu.co/index.php/reving/article/view/17945.

Vancouver

1.
Cárdenas Torrado G, Molina Pérez FJ. Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ing. [Internet]. 2022Aug.12 [cited 2022Sep.26];27(3):e17945. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/17945

Download Citation

Visitas

2

Dimensions


PlumX


Downloads

Download data is not yet available.