DOI:

https://doi.org/10.14483/23448393.22822

Published:

2025-11-13

Issue:

Vol. 30 No. 3 (2025): September-December

Section:

Mechanical Engineering

Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System

Estudio numérico de mezcla bifásica del flujo de nanofluidos en un sistema de enfriamiento para una batería de iones de litio

Authors

Keywords:

computational fluid dynamics, lithium-ion battery, cooling, battery thermal management, mixture (en).

Keywords:

dinámica de fluidos computacional, batería de iones de litio, refrigeración, nanofluidos, mezcla, gestión térmica de la batería (es).

Downloads

Abstract (en)

Context: The cooling performance of a thermal battery plays a critical role in its efficiency, lifespan, and safety. This importance stems from the heat generated during charging and discharging processes. As temperatures rise, key battery characteristics are significantly affected.

Method: Using the ANSYS Fluent computational fluid dynamics software, a 2D numerical simulation was conducted to study the cooling of a lithium-ion battery in the presence of nanofluids. The flow of nanofluids was analyzed using the multiphase mixture model.

Results: It was found that the coolant inlet velocity significantly impacts the module's temperature distribution and the maximum temperature difference, where the temperature differences almost stabilize for inlet velocities exceeding 0.3 m/s. The effect of using nanofluids was studied with three different types of nanoparticles (alumina, copper, and fullerene) dispersed in water as the base fluid. The results show that the temperature difference in the module varies depending on the nature and volume fraction of the nanoparticles. The incorporation of nanofluids leads to a significant reduction in module temperatures. Fullerene nanoparticles were found to exhibit superior cooling performance compared to other nanoparticle types. On the other hand, a nanoparticle volume fraction exceeding 2% yields a nearly uniform temperature distribution within the module, as well as reduced cell temperatures.

Conclusions: Nanofluids have an important effect on battery cooling. Optimizing nanoparticle concentration and flow dynamics can effectively improve thermal management strategies for lithium-ion battery systems.

Abstract (es)

Contexto: El rendimiento de refrigeración de una batería térmica desempeña un papel fundamental en su eficiencia, vida útil y seguridad. Esta importancia se debe al calor generado durante los procesos de carga y descarga. A medida que aumentan las temperaturas, las características clave de la batería se ven significativamente afectadas

Método: Utilizando el software de dinámica de fluidos computacional ANSYS Fluent, se realizó una simulación numérica 2D para estudiar el enfriamiento de una batería de iones de litio en presencia de nanofluidos. El flujo de nanofluidos se analizó utilizando el modelo de mezcla multifásica.

Resultados: Se observó que la velocidad de entrada del refrigerante afecta significativamente la distribución de temperatura del módulo y la diferencia máxima de temperatura, donde las diferencias de temperatura prácticamente se estabilizan para velocidades de entrada superiores a 0.3 m/s. Se estudió el efecto del uso de nanofluidos con tres tipos diferentes de nanopartículas (alúmina, cobre y fullereno) dispersas en agua como fluido base. Los resultados muestran que la diferencia de temperatura en el módulo varía según la naturaleza y la fracción de volumen de las nanopartículas. La incorporación de nanofluidos produce una reducción significativa en la temperatura del módulo. Se observó que las nanopartículas de fullereno presentan un rendimiento de refrigeración superior al de otros tipos de nanopartículas. Por otro lado, una fracción de volumen de nanopartículas superior al 2 % da como resultado una distribución de temperatura prácticamente uniforme dentro del módulo, así como una reducción en la temperatura de la celda.

Conclusiones: Los nanofluidos tienen un efecto importante en la refrigeración de las baterías. Optimizar la concentración de nanopartículas y la dinámica del flujo puede mejorar eficazmente las estrategias de gestión térmica de los sistemas de baterías de iones de litio.

References

REFERENCES

W. Li et al., “A holistic electrothermal profiles online sensing method with sparse sensor system in large-format battery pack,” IEEE Trans. Ind. Elect., vol. 72, no. 10, pp. 10257-10266, 2025. https://doi.org/10.1109/TIE.2025.3555004

S. Vashisht, D. Rakshit, S. Panchal, M. Fowler, and R. Fraser, “Experimental estimation of heat generating parameters for battery module using inverse prediction method,” Int. Comm. Heat Mass Trans., vol. 162, art. 108539, 2025. https://doi.org/10.1016/j.icheatmasstransfer.2024.108539

E. Yousefi et al., “Electrochemical-thermal modeling of phase change material battery thermal management systems: investigating mesh types for accurate simulations,” Int. J. Heat Mass Tran., vol. 247, art. 127107, 2025. https://doi.org/10.1016/j.ijheatmasstransfer.2025.127107

A. H. Vakilzadeh, A. B. Sarvestani, K. Javaherdeh, R. Kamali, and S. Panchal, “To what extent does local oscillation influence the thermal performance of finned PCM-based energy storage systems: A numerical study,” Int. J. Heat Fluid Flow, vol. 114, art. 109798, 2025. https://doi.org/10.1016/j.ijheatfluidflow.2025.109798

Q. Yao, P. Kollmeyer, J. Chen, S. Panchal, O. Gross, amd A. Emadi, “Study of high-power and high-energy lithium-ion batteries: From parameter analysis to physical modeling and experimental validation” SAE Technical Paper, 2025. [Online]. Available: https://www.sae.org/publications/technical-papers/content/2025-01-8372/

H. Alhumade, E. Almatrafi, M. Rawa, A. S. El-Shafay, C. Qi, and Y. Khetib, “Numerical study of simultaneous use of non-Newtonian hybrid nano-coolant and thermoelectric system in cooling of lithium-ion battery and changes in the flow geometry,” J. Power Sources, vol. 540, art. 231626, 2022. https://doi.org/10.1016/j.jpowsour.2022.231626

Y. Yang et al., “Thermal-electrical characteristics of lithium-ion battery module in series connection with a hybrid cooling,” Int. J. Heat Mass Tran., vol. 184, art. 122309, 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122309

G. Liao, W. Wang, F. Zhang, E. Jiaqiang, J. Chen, and E. Leng, “Thermal performance of lithium-ion battery thermal management system based on nanofluid,” Appl. Therm. Eng., vol. 216, art. 118997, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118997

M. Faizan, S. Pati, and P. Randive, “Implications of novel cold plate design with hybrid cooling on thermal management of fast discharging lithium-ion battery,” J. Energy Storage, vol. 53, art. 105051, 2022. https://doi.org/10.1016/j.est.2022.105051

A. Sarchami et al., “A novel nanofluid cooling system for modular lithium-ion battery thermal management based on wavy/stair channels,” Int. J. Therm. Sci., vol. 182, art. 107823, 2022. https://doi.org/10.1016/j.ijthermalsci.2022.107823

K. Joshi, D. Dandotiya, C. S. Ramesh, and S. Panchal, “Numerical analysis of battery thermal management system using passive cooling technique,” SAE Technical Paper, 2023. [Online]. Available: https://doi.org/10.4271/2023-01-0990

S. Panchal, V. Pierre, M. Cancian, O. Gross, F. Estefanous, and T. Badawy, “Development and validation of cycle and calendar aging model for 144Ah NMC/graphite battery at multi temperatures, DODs, and C-rates,” SAE Technical Paper, 2023. [Online]. Available: https://doi.org/10.4271/2023-01-0503

H. A. Hasan, S. Jenan, M. A. Azher, S. S. Hakim, and K. Sopian, “Improve the performance of solar thermal collectors by varying the concentration and nanoparticles diameter of silicon dioxide, Open Engineering, vol. 12, no. 1, pp. 743–751, 2022. https://doi.org/10.1515/eng-2022-0339

K. A. Ameen, M. J. A. Hasan, Al-Dulaimi, A. M. Abed, and F. Haidar, “Improving the performance of air conditioning unit by using a hybrid technique,” MethodsX, vol. 9, art. 101620, 2022. https://doi.org/10.1016/j.mex.2022.101620

W. Li et al., “An internal heating strategy for lithium-ion batteries without lithium plating based on self-adaptive alternating current pulse,” IEEE Trans. Vehic. Tech., vol. 72, no. 5, pp. 5809–5823, 2022. https://doi.org/10.1109/TVT.2022.3229187

H. A. Hasan, S. S. Jenan, J. M. Mahdi, H. Togun, M. A. Azher, R. K. Ibrahim, and W. Yaïci, “Experimental evaluation of the thermoelectrical performance of photovoltaic-thermal systems with a water-cooled heat sink,” Sustainability, vol. 14, no. 16, art. 10231, 2022. https://doi.org/10.3390/su141610231

R. Braga et al., “Transient electrochemical model development and validation of a 144 Ah cell performance under different drive cycles conditions,” SAE Technical Paper, 2023. [Online]. Available: https://doi.org/10.4271/2023-01-0513

N. S. Rukman et al., “Bi-fluid cooling effect on electrical characteristics of flexible photovoltaic panel,” J. Mech. Electr. Power, and Veh. Tech., vol. 12, no. 1, pp. 51–56, 2021. https://doi.org/10.14203/J.MEV.2021.V12.51-56

C. Vivek, A. S Dhoble, S. Panchal, D. Fowler, and D. Fraser, “Experimental and numerical investigation on thermal characteristics of 2×3 designed battery module,” 2023. [Online]. Available: https://dx.doi.org/10.2139/ssrn.4568465

H. N. Khaboshan, F. Jaliliantabar, A. Abdullah, and S. Panchal, “Improving the cooling performance of cylindrical lithium-ion battery using three passive methods in a battery thermal management system,” Appl. Therm. Eng., vol. 227, art. 120320, 2023. https://doi.org/10.1016/j.applthermaleng.2023.120320

K. A. Ameen., M. J. Al-Dulaimi, H. A. Abrahem, and H. A. Hasan, “Experimental study to increase the strength of the adhesive bond by increasing the surface area arrangement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 765, pp. 1–10, 2020. https://doi.org/10.1088/1757-899X/765/1/012054

A. M. Aboghrara, B. T. H. T. Baharudin, M. A. Alghoul, N. M. Adam, A. A. Hairuddin, H. A. Hasan, “Performance analysis of solar air heater with jet impingement on corrugated absorber plate,” Case Stud. Therm. Eng., vol. 10, pp. 111–120, 2017. https://doi.org/10.1016/j.csite.2017.04.002

H. Abdulrasool, A. Ali, L. Abdulredh, and M. A. Azher, “Numerical investigation of nanofluids comprising different metal oxide nanoparticles for cooling concentration photovoltaic thermal CPVT,” Cleaner Eng. Tech., vol. 10, art. 100543, 2022. https://doi.org/10.1016/j.clet.2022.100543

H. Togun et al., “Numerical simulation on heat transfer augmentation by using innovative hybrid ribs in a forward-facing contracting channel,” Symmetry, vol. 15, no. 3, art. 690, 2023. https://doi.org/10.3390/sym15030690

A-dulaimi, J. Mustafa, H. H. Areej, H. A. Hasan, and F. A. Hamad, “Energy and exergy investigation of a solar air heater for different absorber plate configurations,” Int. J. Automot. Mech. Eng., vol. 20, no. 1, pp. 10258–10273, 2023. https://journal.ump.edu.my/ijame/article/view/7317/2742

A. Hasan, H. T. Husam, M. A. Azher, I. M. Hayder, and N. Biswas, “A novel air-cooled Li-ion battery (LIB) array thermal management system – a numerical analysis,” Int. J. Therm. Sci., vol. 190, art. 108327, 2023. https://doi.org/10.1016/j.ijthermalsci.2023.108327

M. Bahiraei, F. Nazri, and G. A. Saif, « Electrochemical-thermal model of pouch-type lithium-ion batteries,” Electrochimica Acta, vol. 247, pp. 569-587, 2017. http://dx.doi.org/10.1016/j.electacta.2017.06.164

M. S. A. Kashkooli, F. M. Ghalambaz, and A. J. Chamkha, “Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity,” Adv. Powder Tech., vol. 28, no. 9, pp. 2295-2305, 2017. https://doi.org/10.1016/J.APT.2017.06.011

Y. Pan et al., “Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications,” App. Catal. B Environ, vol. 265, art. 118579, 2020. https://doi.org/10.1016/j.apcatb.2019.118579

Z. Rao, Z. Qian, Y. Kuang, and Y. Li, “Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface,” Appl. Therm. Eng., vol. 123, pp. 1514–1522, 2017. https://doi.org/10.1016/j.applthermaleng.2017.06.059

Y. Huo, Z. Rao, X. Liu, and J. Zhao, “Investigation of power battery thermal management by using mini-channel cold plate,” Energy Convers. Manage., vol. 89, pp. 387–395, 2015. https://doi.org/10.1016/j.enconman.2014.10.015

A. Benabderrahmane, A. Benazza, S. Laouedj, and J. P. Solano, “Numerical analysis of compound heat transfer enhancement by single and two-phase models in parabolic trough solar receiver,” Mechanika, vol. 23, pp. 55-61, 2017. https://doi.org/10.5755/j01.mech.23.1.14053

How to Cite

APA

Benabderrahmane, A., and Laouedj, S. (2025). Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System. Ingeniería, 30(3), e22822. https://doi.org/10.14483/23448393.22822

ACM

[1]
Benabderrahmane, A. and Laouedj, S. 2025. Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System. Ingeniería. 30, 3 (Nov. 2025), e22822. DOI:https://doi.org/10.14483/23448393.22822.

ACS

(1)
Benabderrahmane, A.; Laouedj, S. Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System. Ing. 2025, 30, e22822.

ABNT

BENABDERRAHMANE, Amina; LAOUEDJ, Samir. Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System. Ingeniería, [S. l.], v. 30, n. 3, p. e22822, 2025. DOI: 10.14483/23448393.22822. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/22822. Acesso em: 8 dec. 2025.

Chicago

Benabderrahmane, Amina, and Samir Laouedj. 2025. “Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System”. Ingeniería 30 (3):e22822. https://doi.org/10.14483/23448393.22822.

Harvard

Benabderrahmane, A. and Laouedj, S. (2025) “Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System”, Ingeniería, 30(3), p. e22822. doi: 10.14483/23448393.22822.

IEEE

[1]
A. Benabderrahmane and S. Laouedj, “Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System”, Ing., vol. 30, no. 3, p. e22822, Nov. 2025.

MLA

Benabderrahmane, Amina, and Samir Laouedj. “Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System”. Ingeniería, vol. 30, no. 3, Nov. 2025, p. e22822, doi:10.14483/23448393.22822.

Turabian

Benabderrahmane, Amina, and Samir Laouedj. “Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System”. Ingeniería 30, no. 3 (November 13, 2025): e22822. Accessed December 8, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/22822.

Vancouver

1.
Benabderrahmane A, Laouedj S. Two-Phase Mixture Numerical Study of Nanofluid Flow in a Lithium-Ion Battery Cooling System. Ing. [Internet]. 2025 Nov. 13 [cited 2025 Dec. 8];30(3):e22822. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/22822

Download Citation

Visitas

24

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
384
145

Indexed in

Editor & editorial board
profiles
Loading...