Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint

Authors

Keywords:

Automation, Artificial intelligence, Electrical substations, Fault detection and diagnosis (en).

Downloads

Abstract (en)

Electric power networks are interconnected systems entrusted with transforming, transmitting, and distributing electricity from generation points to the end user. Within this architecture, electrical substations perform the intermediate function of voltage transformation and help to ensure power quality through appropriate control and protection systems. Accordingly, they require automation technologies that enable the continuous monitoring, control, and protection of the infrastructure involved in these processes. Although there are international standards for grid-automation processes—most notably IEC 61850 for communications [1]—, current advances in artificial intelligence (AI) open a window of opportunity to enhance control responses to grid fluctuations.

References

M. Asim Aftab, S. Suhail Hussain, I. Al, and T. S. Ustun, "IEC 61850 based substation automation system: A survey," Int. J. Elect. Power Energy Syst., vol. 120, art. 106008, 2020. https://doi.org/10.1016/j.ijepes.2020.106008

N. Mayadevi, S. VinodChandra, and S. Ushakumari, "A review on expert system applications in power plants," Int. J. Elect. Comp. Eng. (IJECE), vol. 4, no. 1, pp. 116-126, 2014. http://dx.doi.org/10.11591/ijece.v4i1.5025

Clarion Energy Content Directors, "Electric utility AMR deployments on the rise," Renewable Energy World, September 1, 2001. [Online]. Available: https://www.renewableenergyworld.com/energy-storage/long-duration/electric-utility-amr-deployments-on-the-rise/

C. Rudin, D. Waltz, R. N. Anderson, A. Boulanger, A. Salleb-Aouissi, and M. Chow, "Machine learning for the New York City power grid," IEEE Trans. Pattern Analysis Machine Intel., vol. 34, no. 2, pp. 328-345, 2012. http://hdl.handle.net/1721.1/68634

J. V. Fonseca and E. F. M. Ferreira, "Increase of PLC computability with neural network for recovery of faults in electrical distribution substation," presented at IEEE Int. Instrum. Meas. Tech. Conf. (I2MTC), Minneapolis, MN, USA, 2013. https://doi.org/10.1109/I2MTC.2013.6555470

Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436–444, 2015. https://doi.org/10.1038/nature14539

E. M. Kuyumani, A. N. Hasan, and T. Shongwe, "A hybrid model based on CNN-LSTM to detect and forecast harmonics: A case study of an Eskom substation in South Africa," Elect. Power Comp. Syst., vol. 51, no. 8, pp. 746-760, 2023. https://doi.org/10.1080/15325008.2023.2181883

How to Cite

APA

Guarnizo Marín, J. G. (2025). Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint. Ingeniería, 30(3), e24380. https://doi.org/10.14483/23448393.24380

ACM

[1]
Guarnizo Marín, J.G. 2025. Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint. Ingeniería. 30, 3 (Nov. 2025), e24380. DOI:https://doi.org/10.14483/23448393.24380.

ACS

(1)
Guarnizo Marín, J. G. Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint. Ing. 2025, 30, e24380.

ABNT

GUARNIZO MARÍN, José Guillermo. Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint. Ingeniería, [S. l.], v. 30, n. 3, p. e24380, 2025. DOI: 10.14483/23448393.24380. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/24380. Acesso em: 29 dec. 2025.

Chicago

Guarnizo Marín, José Guillermo. 2025. “Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint”. Ingeniería 30 (3):e24380. https://doi.org/10.14483/23448393.24380.

Harvard

Guarnizo Marín, J. G. (2025) “Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint”, Ingeniería, 30(3), p. e24380. doi: 10.14483/23448393.24380.

IEEE

[1]
J. G. Guarnizo Marín, “Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint”, Ing., vol. 30, no. 3, p. e24380, Nov. 2025.

MLA

Guarnizo Marín, José Guillermo. “Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint”. Ingeniería, vol. 30, no. 3, Nov. 2025, p. e24380, doi:10.14483/23448393.24380.

Turabian

Guarnizo Marín, José Guillermo. “Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint”. Ingeniería 30, no. 3 (November 13, 2025): e24380. Accessed December 29, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/24380.

Vancouver

1.
Guarnizo Marín JG. Trends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint. Ing. [Internet]. 2025 Nov. 13 [cited 2025 Dec. 29];30(3):e24380. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/24380

Download Citation

Visitas

33

Dimensions


PlumX


Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
0
145

Indexed in

Editor & editorial board
profiles
Loading...