DOI:
https://doi.org/10.14483/23448393.21483Publicado:
2024-11-29Número:
Vol. 29 Núm. 3 (2024): Septiembre-diciembreSección:
Ingeniería MecánicaExtreme Testing of Guard Cables with Fiber Optics: A Case Study
Pruebas en condiciones extremas de cable de guarda con fibra óptica: un caso de estudio
Palabras clave:
OPGW cables, mechanical tests, atmospheric discharges (en).Palabras clave:
cables OPGW, pruebas mecánicas, descargas atmosféricas (es).Descargas
Resumen (en)
Context: Optical fiber ground wires (OPGWs) sometimes melt and rupture when exposed to extreme conditions, such as atmospheric discharges, short circuits, and corrosive agents, that affect their electrical and mechanical properties. These conditions depend on the geographical area where the cable is installed, with the most critical being industrial and coastal zones as well as marine and mountainous environments. This research analyzes a cable rupture due to lightning strikes from a coastal zone.
Method: The analysis discusses cable selection criteria based on engineering specifications. It also discusses standardized test methods and procedures. The tests performed are based on visual and dimensional inspections, mechanical stress assessments, and chemical analysis.
Results: The complete analysis allows determining the necessary basis for the characterization and mathematical parameterization of OPGWs, establishing considerations that contribute to proper functioning in order to reduce communication and power supply interruptions.
Conclusions: This study helps to estimate the behavior of the entire structure and the quality of failed OPGWs, providing insights into improving cable design and maintenance practices in harsh environments.
Resumen (es)
Contexto: Los cables de tierra con fibra óptica (OPGW) a veces se derriten y rompen cuando se exponen a condiciones extremas como descargas atmosféricas, cortocircuitos y agentes corrosivos, lo que afecta sus propiedades eléctricas y mecánicas. Dichas condiciones dependen de la zona geográfica donde se instale el cable; las áreas más críticas son las zonas industriales y costeras, así como los ambientes marinos y montañosos. Esta investigación analiza la ruptura de un cable debido a rayos en una zona costera.
Método: Este análisis discute los criterios de selección de cables basados en especificaciones de ingeniería. También se discuten los métodos y procedimientos de prueba estandarizados. Las pruebas realizadas se basan en inspecciones visuales y dimensionales, pruebas de esfuerzo mecánico y análisis químico.
Resultados: El análisis completo permite obtener las bases necesarias para la caracterización y parametrización matemática de los OPGW, estableciendo consideraciones que contribuyen al correcto funcionamiento para reducir las interrupciones de comunicación y suministro eléctrico.
Conclusiones: Este estudio ayuda a estimar el comportamiento de toda la estructura y la calidad de OPGW fallidos, proporcionando información para mejorar el diseño y las prácticas de mantenimiento de los cables en entornos adversos.
Referencias
L. Lu, Y. Liang, B. Li, J. Guo, H. Zhang, and X. Zhang, “Experimental study on location of lightning stroke on opgw by means of a distributed optical fiber temperature sensor,” Optics Las. Tech., vol. 65, p. 79–82, 01 2015.
L. Lu, Y. Liang, B. Li, and J. Guo, “Maintenance of the opgw using a distributed optical fiber sensor,” in 2014 Int. Conf. Power Syst. Tech., 2014, pp. 1251–1256. https://doi.org/10.1109/POWERCON.2014.6993536
M. Iwata, T. Ohtaka, Y. Kuzuma, and Y. Goda, “Development of a method of calculating the melting characteristics of opgw strands due to dc arc simulating lightning strike,” IEEE Trans. Power Del., vol. 28, no. 3, pp. 1314–1321, 2013. https://doi.org/10.1109/TPWRD.2013.2260567
M. Iwata, T. Ohtaka, and Y. Kuzuma, “Analytical investigation on opgw strands melting due to dc arc discharge simulating lightning strike,” in 2012 Int. Conf. Light. Prot. (ICLP), 2012, pp. 1–5. https://doi.org/10.1109/ICLP.2012.6344238
M. Iwata, T. Ohtaka, and Y. Goda, “Calculation of melting/breaking of gw and opgw strands struck by dc arc discharge simulating high energy lightning,” Elec. Power Syst. Res., vol. 113, pp. 70–78, 2014.
A. Gunday and S. E. Karlık, “Optical fiber distributed sensing of temperature, thermal strain and thermo-mechanical force formations on opgw cables under wind effects,” in 2013 8th Int. COnf. Elec. Electron. Eng. (ELECO), 2013, pp. 462–467. https://doi.org/10.1109/ELECO.2013.6713885
W. Shang, J. Gong, X. Zhi, and H. Wang, “Hffb test and wind-induced vibration analysis on 1 000 kv transformer frame,” Ing. Invest., vol. 43, no. 1, p. e88403, Nov. 2022. https://doi.org/10.15446/ing.investig.88403
L. Yuqing, C. Xi, L. Chen, W. Yang, and H. Baosu, “Study on a new and high efficient opgw melting ice scheme,” in 2015 2nd Int. Conf. Info. Sci. Control Eng., 2015, pp. 480–484. https://doi.org/10.1109/ICISCE.2015.111
W. Bi, L. Tian, C. Li, Z. Ma, and H. Pan, “Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect,” Rel. Eng. Syst. Safety, vol. 229, p. 108875, 2023.
T. Du, Y. Zhang, and W. Xia, “Study on the problem of lightning strike opgw,” 2006, pp. 1–4.
J. Sun, X. Yao, J. Ren, Y. Le, Y. Wu, and M. Rong, “Analytical investigation of lightning strike-induced damage of opgws based on a coupled arc-electrical-thermal simulation,” IEEE Trans. Power Del., vol. 37, no. 6, pp. 5145–5155, 2022. https://doi.org/10.1109/TPWRD.2022.3171783
C. R. de Energía, “Reporte de confiabilidad del sistema eléctrico nacional,” 2022, november 27, 2024. [Online]. Available: https://www.gob.mx/cms/uploads/attachment/file/876900/Anexo_ Acuerdo_A-075-2023.pdf
C. F. de Electricidad, “Cable guarda con fibras ópticas. especificación cfe e1000-21,” 2019, november 27, 2024. [Online]. Available: https://lapem.cfe.gob.mx/normas/pdfs/u/E1000-21.pdf
A. International, Standard specification for aluminum 1350-H19 wire for electrical purposes, ASTM Std. B230, 2022. [Online]. Available: https://www.astm.org/b0230_b0230m-22.html
ASTM, Standard specification for concentric-lay-stranded aluminum conductors, coated-steel reinforced (ACSR), ASTM Std. B232, 2024. [Online]. Available: https://www.astm.org/b0232_b0232m-24.html
Y. Goda, S. Yokoyama, S. Watanabe, T. Kawano, and S. Kanda, “Melting and breaking characteristics of opgw strands by lightning,” IEEE Trans. Power. Del., vol. 19, no. 4, pp. 1734–1739, 2004. https://doi.org/10.1109/TPWRD.2004.832410
T. Prabakaran, S. Munshi, H. Roy, and S. Pathak, “Failure analysis on opgw cable during short circuit test,” Power Res. J. CPRI, pp. 81–85, 2023.
L. Jie, L. Gang, and C. Xi, “Study on the thermal stability of opgw under large curren condition,” in 2009 Pacific-Asia COnf. Circ. Comm. Syst., 2009, pp. 629–635. https://doi.org/10.1109/PACCS.2009.103
M. Iwata, T. Ohtaka, Y. Goda, S. Yamagami, A. Kato, and K. Nagano, “Melting and breaking characteristics of strands of high-strength and high-corrosion-resistant opgw due to dc arc discharge simulating high-energy lightning strike,” Elec. Eng. Japan, vol. 214, no. 4, p. e23345, 2021.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Erick-Alejandro González-Barbosa, Fernando Jurado-Pérez, Jose-Joel Gonazlez-Barbosa, Julio Cesar Méndez-Gutiérrez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
A partir de la edición del V23N3 del año 2018 hacia adelante, se cambia la Licencia Creative Commons “Atribución—No Comercial – Sin Obra Derivada” a la siguiente:
Atribución - No Comercial – Compartir igual: esta licencia permite a otros distribuir, remezclar, retocar, y crear a partir de tu obra de modo no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.