Clasificación Automática del Avance de Megaproyectos de Inversión Pública en Colombia, desde un Enfoque Técnico, Organizacional y Ambiental

Automatic Classification of Public Investment Megaprojects in Colombia from a Technical, Organizational and Environmental approach

  • Hugo Gutierrez TIVIT
  • Miguel Melgarejo Universidad Distrital Francisco Jose de Caldas
Keywords: megaprojects, complexity, management, neural networks, support vector machines (en_US)
Keywords: Complejidad, Gestión, Máquinas de vectores de soporte, Megaproyectos, Redes (es_ES)

Abstract (es_ES)

Contexto: se considera el marco técnico, organizacional y ambiental (TOE, por sus siglas en inglés)  para el   análisis de proyectos de gran escala como contexto para el desarrollo de clasificadores de avance de megaproyectos, según las necesidades del Departamento Nacional de Planeación, Colombia.

Método: se establecen algunas características para la clasificación del avance de proyectos de inversión pública, tomadas del marco TOE; a partir de estas, se construye una base de datos que se utiliza para entrenar dos clasificadores del avance de los proyectos reportados en la plataforma de seguimiento de proyectos de inversión del departamento de planeación nacional. Se empleó la información de cerca de 3200 proyectos registrados entre el 2008 y 2012, correspondientes a cuatro sectores económicos (medio ambiente y desarrollo sostenible, minas y energía, salud y protección social y transporte). La base de datos fue depurada siguiendo un enfoque analítico y cuantitativo. Se empleó el 70% de los datos para entrenamiento y el 30% para validación.

Resultados: se obtienen algunos modelos con tasas de clasificación superiores al 70%, lo que valida la elección de características a partir del análisis del marco TOE.

Conclusiones: este trabajo es un punto de partida para la configuración de una herramienta que pueda ser usada por el departamento nacional de planeación en la evaluación a priori del retraso de megaproyectos de inversión pública.

Abstract (en_US)

Context:   the TOE (Technical, Organizational, and Environmental) framework for the analysis of large scale projects is considered as the basis for the development of megaproject progress classification in accordance with the needs of the national planning agency in Colombia.

Method: Classification of a megaproject progress is supported in the selection of several features taken from the TOE. These feature set is used to configure a database from the projects registered in the project-surveillance platform of the national planning agency in Colombia. The database is used to train two classification models. Information about 3200 projects from 2008 to 2012 was used, covering four economic sectors (Environment and sustainable development, Energy and mining, Health and social care and transportation). Debugging of the database was carried out by an analytic and quantitative approach. Model training and validation were computed with 70% and 30% of data respectively.  

Results: obtained models have similar performances beyond 70% in precision and agree in relevant input features.

Conclusions: this work is a starting point to develop an automatic tool that can be used by the national planning agency of Colombia in the a-priori evaluation of delays in public investment Megaprojects. 

Downloads

Download data is not yet available.

Author Biographies

Hugo Gutierrez, TIVIT

Ingeniero electrónico de la Universidad Distrital Francisco José de Caldas. Coordinador Técnico de Servicios TI para Colombia en la empresa TIVIT. Durante sus estudios de pregrado fue miembro del grupo de investigación Laboratorio de Automática e Inteligencia Computacional LAMIC y miembro voluntario del Instituto de Ingenieros Eléctricos y Electrónicos IEEE Colombia

Miguel Melgarejo, Universidad Distrital Francisco Jose de Caldas

Ingeniero electrónico, Universidad Distrital Francisco José de Caldas. Magister en ingeniería electrónica y computadores, Universidad de los Andes, Colombia. Candidato a doctor en ingeniería, Pontificia Universidad Javeriana. Miembro del grupo de investigación Laboratorio de Automática e Inteligencia Computacional LAMIC. Profesor asociado, facultad de ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá DC. Senior member, Instituto de ingenieros Eléctricos y Electrónicos, IEEE. 

 

References

T. Williams, “How Do Organizations Learn Lessons from Projects — And Do They?”. IEEE Transactions on Engineering Management, vol. 55, no. 2, pp. 248–266, 2008.

E. Maaninen-Olsson and T. Müllern, “A contextual understanding of projects—The importance of space and time”. Scandinavian Journal of Management, vol. 25, no. 3, pp. 327–339, 2009.

T. Williams, “Assessing and Moving on From the Dominant Project Management Discourse in the Light of Project Overruns”. IEEE Transactions on Engineering Management, vol. 52, no. 4, pp. 497–508, 2005.

L.E. Bohórquez, “La comprensión de las organizaciones empresariales y su ambiente como sistemas de complejidad creciente: rasgos e implicaciones”. Ingeniería, vol.21, no. 3, pp. 363-377, 2016.

M. Bosch-Rekveldt, Y. Jongkind, H. Mooi, H. Bakker, and A. Verbraeck, “Grasping Project Complexity in Large Engineering Projects: The TOE (Technical, Organizational and Environmental) Framework”. International Journal of Project Management, vol. 29, no. 6, pp. 728–739, 2011.

H. Jin, J. Zhao, and X. Chen, “The Application of Neuro-Fuzzy Decision Tree in Optimal Selection of Technological Innovation Projects”. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), pp. 438–443, Jul. 2007.

C.-C. Huang, P.-Y. Chu, and Y.-H. Chiang, “A fuzzy AHP Application in Government-Sponsored R&D Project Selection”. The International Journal of Management Science, vol. 36, no. 6, pp. 1038–1052, 2008.

K. Khalili-Damghani, S. Sadi-Nezhad, F. H. Lotfi, and M. Tavana, “A Hybrid Fuzzy Rule-Based Multi-Criteria Framework for Sustainable Project Portfolio Selection”. Journal of Information Sciences, vol. 220, pp. 442–462, 2013.

N. R. Shankar, P. P. B. Rao, S. Siresha, and K. U. Madhuri, “Critical Path Method in a Project Network using Ant Colony Optimization”. International Journal of Computational Intelligence Research, vol. 7, no. 1, pp. 7–16, 2011.

Y. Wang, “Resource-Constrained Multi-Project Scheduling Based on Ant Colony Neural Network”. The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding, pp. 179–182, 2010.

A. H. L. Chen and C.-C. Chyu, “A Memetic Algorithm for Maximizing Net Present Value in Resource-Constrained Project Scheduling Problem”. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2396–2403, Jun. 2008

M.T.Musavi, K. H. Chan, D. M. Hummels, and K. Kalantri. “On the Generalization Ability of Neural Network Classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp 659-663, 1994.

M. Pal and G. Foody. “Feature Selection for Classification of Hyperspectral Data by SVM”. IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 5, pp. 2297-2307, 2010

Departamento Nacional de Planeación. 2013. [En línea]. Disponible en: https://www.dnp.gov.co/

Seguimiento a Proyectos de Inversión (SPI). Departamento Nacional de Planeación. 2013. [En línea]. Disponible en: https://spi.dnp.gov.co/

F. Costantino, G. Gravio, F. Nonino. “Project Selection in Project Portfolio Management: An Artificial Neural Network Model Based on Critical Success Factors”. International Journal of Project Management, Vol. 33, No 8, pp 1744-1754,2015

D. Wolpert. “The Lack Of A Priori Distinctions Between Learning Algorithms”. Neural Computation, Vol. 8, No. 7, pp. 1341–1390,1996.

D. Wolpert and W.Macready. “No Free Lunch Theorems For Optimization”. IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 67–82, 1997.

R. Duda, P. Hart and D. Stork, Pattern Classification, John Wiley & Sons, 2001.

I. Steinwart and A. Christman, Support Vector Machines, Springer, 2008.

L. Haitao and Z. Xiaofu, “Introducing a New Method to Predict the Project Time Risk”. 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, no. 1, pp. 27–30, 2009

S. Petruvesa, V. Zileska and V. Zujo, “Predicting construction Project Duration with Support Vector Machine”. International Journal of research in Engineering and Technology, Vol 11, No. 2, pp. 12-24, 2013.

HC Yin and YS Chen”. A Novel Machine Learning Model For Risk Management”. Proceedings oft he first Asia-pacific conference on global business, economics, finance and social sciences, Singapore, August, pp. 1-15, 2014

How to Cite
Gutierrez, H., & Melgarejo, M. (2017). Automatic Classification of Public Investment Megaprojects in Colombia from a Technical, Organizational and Environmental approach. Ingeniería, 22(3), 377-395. https://doi.org/10.14483/23448393.11483
Published: 2017-09-12
Section
Complex Systems