
DOI:
https://doi.org/10.14483/23448393.19845Published:
2023-10-18Issue:
Vol. 28 No. 3 (2023): September-DecemberSection:
Environmental EngineeringCharacterization of Microbubbles Generated in a Venturi Tube via Image Processing: Effect of Operating Parameters
ACaracterización de microburbujas generadas en un tubo Venturi mediante procesamiento de imágenes: efecto de los parámetros operativos
Keywords:
Dissolved air flotation, Microbubble, Venturi tube, Wastewater treatment (en).Keywords:
Flotación por aire disuelto, Microburbujas, Tratamiento de aguas residuales, Tubo venturi (es).Downloads
Abstract (en)
Context: This research developed a dissolved air flotation system using a Venturi tube to produce microbubbles. The Venturi tube replaces the saturation tank and the pressure-reducing valve of conventional systems.
Method: The system has both suction and injection air inlets, regulates the recirculation flow of the liquid to the tank, and provides a high hydraulic load in a reduced size. Counting and measuring the microbubbles produced via digital image processing helps to characterize the system's performance.
Results: The system with air suction produces smaller bubbles than that with air injection. A higher liquid recirculation pressure produces more bubbles and reduces their size in the case of air suction.
Conclusions: In air injection, the change in flow rate influences the size of the microbubbles. Air injection and recirculation pressure do not influence the number of bubbles generated.
Abstract (es)
Contexto: Esta investigación desarrolló un sistema de flotación por aire disuelto utilizando un tubo Venturi para producir microburbujas. El tubo Venturi sustituye el tanque de saturación y la válvula reductora de presión de los sistemas convencionales.
Método: El sistema tiene entradas de aire tanto por aspiración como por inyección, regula el flujo de recirculación del líquido al tanque y proporciona una alta carga hidráulica en un tamaño reducido. El conteo y la medición por procesamiento digital de imágenes de las microburbujas producidas ayuda a caracterizar el desempeño del sistema.
Resultados: El sistema de succión de aire produce burbujas más pequeñas que el de inyección de aire. Una mayor presión de recirculación del líquido produce más burbujas y reduce su tamaño en el caso de la succión de aire.
Conclusiones: En la inyección de aire, el cambio de caudal influye en el tamaño de las microburbujas. La inyección de aire y la presión de recirculación no influyen en el número de burbujas generadas.
References
C. Li, J. Li, N. Wang, Q. Zhao, and P. Wang, “Status of the treatment of produced water containing polymer in oilfields: A review,” J. Environ. Chem. Eng., vol. 9, no. 4, art. 105303, 2021. https://doi.org/10.1016/j.jece.2021.105303
L. Yu, M. Han, and F. He, “A review of treating oily wastewater,” Arabian J. Chem., vol. 10, pp. S1913-S1922, 2017. https://doi.org/10.1016/j.arabjc.2013.07.020
G. L. Muniz, A. C. Borges, and T. C. F. da Silva, “Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation,” J. Water Process Eng., vol. 37, art. 101453, 2020. https://doi.org/10.1016/j.jwpe.2020.101453
R. Prakash, S. K. Majumder, and A. Singh, “Flotation technique: Its mechanisms and design parameters,” Chem. Eng. Processing-Process Intens., vol. 127, pp. 249-270, 2018. https://doi.org/10.1016/j.cep.2018.03.029
G. Pooja, P. S. Kumar, and S. Indraganti, “Recent advancements in the removal/recovery of toxic metals from aquatic system using flotation techniques,” Chemosphere, vol. 287, art. 132231, 2022. https://doi.org/10.1016/j.chemosphere.2021.132231
X. Yan, S. Meng, A. Wang, L. Wang, and Y. Cao, “Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column,” Asia-Pacific J. Chem. Eng., vol. 13, no. 3, art. e2185, 2018. https://doi.org/10.1002/apj.2185
R. Mohtashami and J. Q. Shang, “Electroflotation for treatment of industrial wastewaters: a focused review,” Env. Proc., vol. 6, no. 2, pp. 325-353, 2019. https://doi.org/10.1007/s40710-019-00348-z
F. C. P. e Silva, N. M. P. e Silva, J. M. Luna, R. D. Rufino, V. A. Santos, and L. A. Sarubbo, “Dissolved air flotation combined to biosurfactants: a clean and efficient alternative to treat industrial oily water,” Rev. Environ. Sci. Biotechnol., vol. 17, no. 4, pp. 591-602, 2018. https://doi.org/10.1007/s11157-018-9477-y
Z. Khan et al., “Current developments in esterification reaction: A review on process and parameters,” J. Ind. Eng. Chem., vol. 103, pp. 80-101, 2021. https://doi.org/10.1016/j.jiec.2021.07.018
D. Mesa and P. R. Brito-Parada, “Scale-up in froth flotation: A state-of-the-art review,” Sep. Purif. Technol., vol. 210, pp. 950-962, 2019. https://doi.org/10.1016/j.seppur.2018.08.076
M. Alheshibri, J. Qian, M. Jehannin, and V. S. J. Craig, “A history of nanobubbles,” Langmuir, vol. 32, no. 43, pp. 11086-11100, 2016. https://doi.org/10.1021/acs.langmuir.6b02489
A. Gordiychuk, M. Svanera, S. Benini, and P. Poesio, “Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator,” Exp. Therm. Fluid. Sci., vol. 70, pp. 51-60, 2016. https://doi.org/10.1016/j.expthermflusci.2015.08.014
K. H. A. L. Mahmood, S. J. Wilkinson, and W. B. Zimmerman, “Airlift bioreactor for biological applications with microbubble mediated transport processes,” Chem. Eng. Sci., vol. 137, pp. 243-253, 2015. https://doi.org/10.1016/j.ces.2015.06.032
T. Temesgen, T. T. Bui, M. Han, T. Kim, and H. Park, “Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review,” Adv. Colloid Interface Sci., vol. 246, pp. 40-51, 2017. https://doi.org/10.1016/j.cis.2017.06.011
N. Asaithambi, P. Singha, M. Dwivedi, and S. K. Singh, “Hydrodynamic cavitation and its application in food and beverage industry: A review,” J. Food Process Eng., vol. 42, no. 5, art. e13144, 2019. https://doi.org/10.1111/jfpe.13144
N. Nirmalkar, A. W. Pacek, and M. Barigou, “On the existence and stability of bulk nanobubbles,” Langmuir, vol. 34, no. 37, pp. 10964-10973, 2018. https://doi.org/10.1021/acs.langmuir.8b01163
Y. Yoo et al., “Method for Determining Optimum Operational Conditions of Microbubble Scrubber Using Image Processing.,” J. Environ. Informatics, vol. 38, no. 2, pp. 83-92, 2021. https://doi.org/10.3808/jei.202100457
I. v Naumov, B. R. Sharifullin, and V. N. Shtern, “Vortex breakdown in the lower fluid of two-fluid swirling flow,” Phys. Fluids, vol. 32, no. 1, art. 14101, 2020. https://doi.org/10.1063/1.5132584
C. H. Lee, H. Choi, D.-W. Jerng, D. E. Kim, S. Wongwises, and H. S. Ahn, “Experimental investigation of microbubble generation in the venturi nozzle,” Int. J. Heat Mass Transf., vol. 136, pp. 1127-1138, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040
B. Swart et al., “In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography,” Chem. Eng. Sci., vol. 225, art. 115836, 2020. https://doi.org/10.1016/j.ces.2020.115836
F. Noelle, M. R. Molteno, and R. W. M. Pott, “Calibrated bubble depth determination using a single camera,” Chem. Eng. Res. Design, vol. 164, pp. 11-22, 2020. https://doi.org/10.1016/j.cherd.2020.09.023
M. Lichti and H.-J. Bart, “Bubble size distributions with a shadowgraphic optical probe,” Flow Meas. Inst., vol. 60, pp. 164-170, 2018. https://doi.org/10.1016/j.flowmeasinst.2018.02.020
R. Prakash, S. Kumar Majumder, and A. Singh, “Bubble size distribution and specific bubble interfacial area in two-phase microstructured dense bubbling bed,” Chem. Eng. Res. Design, vol. 156, pp. 108-130, 2020. https://doi.org/10.1016/j.cherd.2020.01.032
X. Chen et al., “Fourier-transform-based two-stage camera calibration method with simple periodical pattern,” Opt. Lasers Eng., vol. 133, art. 106121, 2020. https://doi.org/10.1016/j.optlaseng.2020.106121
P. F. Fazzini, P. G. Merli, and G. Pozzi, “Electron microscope calibration for the Lorentz mode,” Ultramicroscopy, vol. 99, no. 2, pp. 201-209, 2004. https://doi.org/10.1016/j.ultramic.2004.01.002
Q. Zhang, H. Xie, W. Shi, and B. Fan, “A novel sampling moiré method and its application for distortion calibration in scanning electron microscope,” Opt. Lasers Eng., vol. 127, art. 105990, 2020. https://doi.org/10.1016/j.optlaseng.2019.105990
M. Li, A. Bussonnière, M. Bronson, Z. Xu, and Q. Liu, “Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles,” Miner. Eng., vol. 132, pp. 268-274, 2019. https://doi.org/10.1016/j.mineng.2018.11.001
Y. Xiong and F. Peng, “Optimization of cavitation venturi tube design for pico and nano bubbles generation,” Int. J. Min. Sci. Technol., vol. 25, no. 4, pp. 523-529, 2015. https://doi.org/10.1016/j.ijmst.2015.05.002
P. Mavros and K. A. Matis, Innovations in Flotation Technology, Dodrecht, Netherlands: Springer Science & Business Media, 2013.
P. Palaniandy, M. N. Adlan, H. A. Aziz, M. F. Murshed, and Y.-T. Hung, “Dissolved air flotation (DAF) for wastewater treatment,” Waste Treat. Serv. Utility Ind., pp. 145-182, 2017. https://doi.org/10.1201/b22213-5
M. Salgot and M. Folch, “Wastewater treatment and water reuse,” Curr. Opin. Environ. Sci. Health, vol. 2, pp. 64-74, 2018. https://doi.org/10.1016/j.coesh.2018.03.005
P. Pazouki, R. A. Stewart, E. Bertone, F. Helfer, and N. Ghaffour, “Life cycle cost of dilution desalination in off-grid locations: A study of water reuse integrated with seawater desalination technology,” Desalination, vol. 491, art. 114584, 2020. https://doi.org/10.1016/j.desal.2020.114584
M. A. Santos, F. Capponi, C. H. Ataíde, and M. A. S. Barrozo, “Wastewater treatment using DAF for process water reuse in apatite flotation,” J. Clean. Prod., vol. 308, art. 127285, 2021. https://doi.org/10.1016/j.jclepro.2021.127285
X. Lin, J. Song, X. Chen, and H. Yang, “Ultrasound-activated sensitizers and applications,” Angewandte Chemie Int. Ed., vol. 59, no. 34, pp. 14212-14233, 2020. https://doi.org/10.1002/anie.201906823
H. He, H. Li, Y. Huang, J. Huang, and P. Li, “A novel efficient camera calibration approach based on K-SVD sparse dictionary learning,” Measurement, vol. 159, art. 107798, 2020. https://doi.org/10.1016/j.measurement.2020.107798
M. Qadafi, S. Notodarmojo, and Y. Zevi, “Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes,” Sci. Total Env., vol. 747, art. 141540, 2020. https://doi.org/10.1016/j.scitotenv.2020.141540
S. Zhong, X. Zou, Z. Zhang, and H. Tian, “A flexible image analysis method for measuring bubble parameters,” Chem. Eng. Sci., vol. 141, pp. 143-153, 2016. https://doi.org/10.1016/j.ces.2015.10.033
S. J. Gulden, C. Riedele, S. Rollié, M.-H. Kopf, and H. Nirschl, “Online bubble size analysis in micro flotation,” Chem. Eng. Sci., vol. 185, pp. 168-181, 2018. https://doi.org/10.1016/j.ces.2018.04.009
J. Ilonen et al., “Comparison of bubble detectors and size distribution estimators,” Pat. Recognit. Lett., vol. 101, pp. 60-66, 2018. https://doi.org/10.1016/j.patrec.2017.11.014
X. Wang, C. Song, C. Yang, and Y. Xie, “Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation,” Miner. Eng., vol. 128, pp. 17-26, 2018. https://doi.org/10.1016/j.mineng.2018.08.017
H. Zhang, Z. Tang, Y. Xie, X. Gao, and Q. Chen, “A watershed segmentation algorithm based on an optimal marker for bubble size measurement,” Measurement, vol. 138, pp. 182-193, 2019. https://doi.org/10.1016/j.measurement.2019.02.005
N. N. Misra, R. Phalak, and A. Martynenko, “A microscopic computer vision algorithm for autonomous bubble detection in aerated complex liquids,” J. Food Eng., vol. 238, pp. 54-60, 2018. https://doi.org/10.1016/j.jfoodeng.2018.06.007
L. Vinnett, J. Sovechles, C. O. Gomez, and K. E. Waters, “An image analysis approach to determine average bubble sizes using one-dimensional Fourier analysis,” Miner. Eng., vol. 126, pp. 160-166, 2018. https://doi.org/10.1016/j.mineng.2018.06.030
M. de Langlard, H. Al-Saddik, S. Charton, J. Debayle, and F. Lamadie, “An efficiency improved recognition algorithm for highly overlapping ellipses: Application to dense bubbly flows,” Pat. Recognit. Lett., vol. 101, pp. 88-95, 2018. https://doi.org/10.1016/j.patrec.2017.11.024
N. Strokina, J. Matas, T. Eerola, L. Lensu, and H. Kälviäinen, “Detection of bubbles as concentric circular arrangements,” Machine Vision App., vol. 27, pp. 387-396, 2016. https://doi.org/10.1007/s00138-016-0749-7
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Jhonnatan Stiven Mera-Campo, Jeimmy Adriana Muñoz-Alegría, Juan Fernando Flórez-Marulanda, Elena Muñoz-España

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.