Vol. 29 No. 1 (2024): January-April


Electrical, Electronic and Telecommunications Engineering

Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition

Sistemas de gestión de energía para microrredes: evolución y desafíos en el marco de la transición energética



Microgrid, management system, input and output variables (en).


microrred, sistema de gestión, variables de entrada y salida (es).

Abstract (en)

Context: Microgrids have been gaining space and credibility in terms of research and real applications. Technological maturity and new regulations have allowed these types of systems to position themselves as a real alternative to increase the coverage of the energy service and improve its quality. One of the biggest challenges of microgrids is the management of resources and their synchronization with conventional grids. In order to overcome the inconvenience of synchronizing and managing the components of a microgrid, research on management systems has been conducted, which usually consist of a set of modules and control strategies that manage the available resources. However, these studies have not reached unanimity on the best method to perform these tasks, which is why it is necessary to perform a systematic collection of information and clearly define the state of research in energy systems management for this type of network.

Method: Based on the above, a systematic mapping was carried out in this article, wherein a significant number of papers that have contributed to this area were compiled. Taxonomies were generated based on the nature of the variables collected. These variables correspond to the data or information that enters and/or leaves the microgrid management system, such as meteorological variables, power, priority loads, intelligent loads, economic, operating states, and binary outputs.

Conclusions: It was observed that, despite the advances in studying different techniques and strategies microgird control and management, other factors that may affect performance have not been covered in a relevant way, such as the nature of variables and microgrid topology, among others.     

Abstract (es)

Contexto: Las microrredes eléctricas han venido ganando espacio y credibilidad a nivel de investigación y aplicaciones reales. La madurez tecnológica y las nuevas regulaciones han permitido que este tipo de sistemas se posicionen como una alternativa real para aumentar la cobertura del servicio de energía y mejorar su calidad. Uno de los mayores retos de las microrredes es la gestión de los recursos y su sincronización con la red convencional. Con el fin de superar el inconveniente de sincronizar y gestionar los componentes de la microrred, se ha investigado sobre sistemas de gestión, los cuales normalmente consisten en un conjunto de módulos y estrategias de control que administran los recursos disponibles. Sin embargo, estas investigaciones no han llegado a una unanimidad sobre el mejor método para realizar estas tareas, por lo cual se hace necesario realizar una recopilación sistemática de información y definir claramente el estado de la investigación en gestión de sistemas de energía para este tipo de redes.

Método: Con base en lo anterior, en este artículo se realizó un mapeo sistemático, donde se recopiló un importante número de artículos que han aportado a este campo. Se generaron taxonomías basadas en la naturaleza de las variables que se recopilaron. Dichas variables corresponden a los datos o información que entran y/o salen del sistema de gestión de la microrred, tales como variables meteorológicas, potencia, cargas prioritarias, cargas inteligentes, económicas, estados de operación y salidas binarias.

Conclusiones: Se observa que, a pesar de los avances en el estudio de las diferentes técnicas y estrategias de control y gestión de microrredes, no se han cubierto de forma relevante otros factores que pueden afectar al rendimiento, como la naturaleza de las variables y la topología de la microrred, entre otros.


Z. Shuai et al., “Microgrid stability: Classification and a review,” Renew. Sustain. Energy Rev., vol. 58, pp. 167-179, 2016.

O. O. Approach, K. Rahbar, S. Member, J. Xu, and R. Zhang, “Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 124-134, 2015.

C. L. Nge, I. U. Ranaweera, O. M. Midtgård, and L. Norum, “A real-time energy management system for smart grid integrated photovoltaic generation with battery storage,” Renew. Energy, vol. 130, pp. 774-785, 2019.

W. El-Baz, P. Tzscheutschler, and U. Wagner, “Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies,” Appl. Energy, vol. 241, pp. 625-639, 2019.

K. Markov and N. Rajaković, “Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line,” Energy Convers. Manag., vol. 196, pp. 1105-1112, 2019.

T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973-1991, 2020.

L. Miller and R. Carriveau, “Energy demand curve variables – An overview of individual and systemic e ff ects,” Sustain. Energy Technol. Assessments, vol. 35, pp. 172-179, 2019.

R. S. Jayashree and P. J. A. Kenis, “Micro fuel cells for portable applications,” AIChE Annu. Meet. Conf. Proc., no. 42, art. 3390, 2005.

E. Bullich-massagué, F. Díaz-gonzález, M. Aragüés-peñalba, F. Girbau-llistuella, P. Olivella-rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340-361, 2018.

J. Shen, C. Jiang, Y. Liu, and X. Wang, “A microgrid energy management system and risk management under an electricity market environment,” IEEE Access, vol. 4, pp. 2349-2356, 2016.

D. Giaouris et al., “A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response,” Appl. Energy, vol. 226, pp. 546-559, 2018.

D. Petreus, R. Etz, T. Patarau, and M. Cirstea, “An islanded microgrid energy management controller validated by using hardware-in-the-loop emulators,” Int. J. Electr. Power Energy Syst., vol. 106,. 346-357, 2019.

W. Su and J. Wang, “Energy management systems in microgrid operations,” Electr. J., vol. 25, no. 8, pp. 45-60, 2012.

L. A. Dao, A. Dehghani-Pilehvarani, A. Markou, and L. Ferrarini, “A hierarchical distributed predictive control approach for microgrids energy management,” Sustain. Cities Soc., vol. 48, art. 101536, 2019.

T. Morstyn, B. Hredzak, and V. G. Agelidis, “Control strategies for microgrids with distributed energy storage systems: An overview,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3652-3666, 2018.

M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects,” Appl. Energy, vol. 222, pp. 1033-1055, 2018.

T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, 2016.

J. Pascual, J. Barricarte, P. Sanchis, and L. Marroyo, “Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting,” Appl. Energy, vol. 158, pp. 12-25, 2015.

International Electrotechnical Commission, “IEC 61970-1:2005 | IEC Webstore | automation, cyber security, smart city, smart energy, smart grid,” pp 5-7 2005. (accessed Oct. 16, 2020).

C. C. S. Duan and T. C. B. Liu, “Smart energy management system for optimal microgrid economic operation,” IET Rene. Power Gen., vol. 5, no. 3, pp. 258-267, 2011.

A. Ahmad Khan, M. Naeem, M. Iqbal, S. Qaisar, and A. Anpalagan, “A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids,” Renew. Sustain. Energy Rev., vol. 58, pp. 1664-1683, 2016.

M. Hu, J. W. Xiao, S. C. Cui, and Y. W. Wang, “Distributed real-time demand response for energy management scheduling in smart grid,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 233-245, 2018.

M. Elsied, A. Oukaour, T. Youssef, H. Gualous, and O. Mohammed, “An advanced real time energy management system for microgrids,” Energy, vol. 114, pp. 742-752, 2016.

K. Say, M. John, and R. Dargaville, “Power to the people : Evolutionary market pressures from residential PV battery investments in Australia,” Energy Policy, vol. 134, art. 110977, 2019.

T. R Nudell, M. Brignone, M. Robba, A. Bonfiglio, F. Delfino, and A. Annaswamy, “A dynamic market mechanism for combined heat and power microgrid energy management,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10033-10039, 2017.

S. Chalise, J. Sternhagen, T. M. Hansen, and R. Tonkoski, “Energy management of remote microgrids considering battery lifetime,” Electr. J., vol. 29, no. 6, pp. 1-10, 2016.

J. Shen, C. Jiang, Y. Liu, and J. Qian, “Electric power components and systems a microgrid energy management system with demand response for providing grid peak shaving a microgrid energy management system with demand response for providing grid peak shaving,” Elec. Power Comp. Syst., vol. 44, no. 8, 2016.

S. Sukumar, H. Mokhlis, S. Mekhilef, and K. Naidu, “Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid,” Energy, vol. 118, pp. 1322-1333, 2017.

G. Comodi et al., “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies,” Appl. Energy, vol. 137, pp. 854-866, 2015.

M. H. Amrollahi, S. Mohammad, and T. Bathaee, “Techno-economic optimization of hybrid photovoltaic / wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response,” Appl. Energy, vol. 202, pp. 66-77, 2017.

M. Střelec and J. Berka, "Microgrid energy management based on approximate dynamic programming," in IEEE PES ISGT Europe 2013, Lyngby, Denmark, 2013, pp. 1-5.

S. Golshannavaz, S. Afsharnia, and P. Siano, “A comprehensive stochastic energy management system in reconfigurable microgrids,” Int. J. Energy, Res., vol. 40, no. 11, pp. 1518-1531, 2016.

J. Radosavljevi, M. Jevti, and D. Klimenta, “Engineering optimization energy and operation management of a microgrid using particle swarm optimization,” Energy Opt., vol. 48, no. 5, pp. 811-813, 2015.

M. Marzband, E. Yousefnejad, A. Sumper, and J. L. Domínguez-García, "Real time experimental implementation of optimum energy management system in stand-alone Microgrid by using multi-layer ant colony optimization," Int. J. Electr. Power Energy Syst., vol. 75, pp. 265-274, 2016.

M. Marzband, M. Ghadimi, A. Sumper, and J. L. Domínguez-garcía, “Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode,” Appl. Energy, vol. 128, pp. 164-174, 2014.

D. Arcos-Aviles, J. Pascual, F. Guinjoan, L. Marroyo, P. Sanchis, and M. P. Marietta, “Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting,” Appl. Energy, vol. 205, pp. 69-84, 2017.

Y.-K. Chen, Y.-C. Wu, C.-C. Song, and Y.-S. Chen, "Design and implementation of energy management system with fuzzy control for DC microgrid systems," IEEE Trans. Power Elect., vol. 28, no. 4, pp. 1563-1570, April 2013.

T. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sadhana - Acad. Proc. Eng. Sci., vol. 41, no. 7, pp. 755-769, 2016.

A. Anvari-moghaddam, A. Rahimi-kian, M. S. Mirian, and J. M. Guerrero, “A multi-agent based energy management solution for integrated buildings and microgrid system,” Appl. Energy, vol. 203, pp. 41-56, 2017.

C. Corchero and M. Cruz-zambrano, “Optimal energy management for a residential microgrid including a vehicle-to-grid system,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2163-2172, 2014.

A. G. Tsikalakis and N. D. Hatziargyriou, "Centralized control for optimizing microgrids operation," IEEE Trans. Energy Conv., vol. 23, no. 1, pp. 241-248, March 2008.

N. Anglani, G. Oriti, and M. Colombini, “Optimized energy management system to reduce fuel consumption in remote military microgrids,” IEEE Trans. Ind. App., vol. 53, no. 6, pp. 5777-5785, 2017.

B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, and F. L. G. Jiménez-estévez, “Continuous optimal control approaches to microgrid energy management,” Energy Syst., vol. 9, pp. 59-77, 2017.

J. B. Almada, R. P. S. Leão, R. F. Sampaio, and G. C. Barroso, “A centralized and heuristic approach for energy management of an AC microgrid,” Renew. Sustain. Energy Rev., vol. 60, pp. 1396-1404, 2016.

K. Hassan Youssef, “Optimal management of unbalanced smart microgrids for scheduled and unscheduled multiple transitions between grid-connected and islanded modes,” Electr. Power Syst. Res., vol. 141, pp. 104-113, 2016.

A. Choudar, D. Boukhetala, S. Barkat, and J. Brucker, “A local energy management of a hybrid PV -storage based distributed generation for microgrids,” Energy Convers. Manag., vol. 90, pp. 21-33, 2015.

P. P. Vergara, J. C. López, L. C. P. Silva, and M. J. Rider, “Security-constrained optimal energy management system for three-phase residential microgrids,” Electr. Power Syst. Res., vol. 146, pp. 371-382, 2017.

H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. Francois, and S. Member, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electronics, vol. 58, no. 10, pp. 4583-4592, 2011.

M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication,” Energy Build., vol. 59, pp. 236-243, 2013.

A. Askarzadeh, “A memory-based genetic algorithm for optimization of power generation in a microgrid,” IEEE Trans. Sust. Energy, vol. 9, no. 3, pp. 1081-1089, 2017.

N. Tiwari and L. Srivastava, "Generation scheduling and micro-grid energy management using differential evolution algorithm," 2016 Int. Conf. Circuit, Power Comp. Tech. (ICCPCT), Nagercoil, India, 2016, pp. 1-7.

T. Niknam, F. Golestaneh, and A. Malekpour, “Probabilistic energy and operation management of a microgrid containing wind / photovoltaic / fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm,” Energy, vol. 43, no. 1, pp. 427-437, 2012.

M. Motevasel and T. Niknam, “Multi-objective energy management of CHP (combined heat and power)-based micro-grid,” Energy, vol. 51, pp. 123-136, 2013.

M. Motevasel and A. R. Seifi, “Expert energy management of a micro-grid considering wind energy uncertainty,” Energy Convers. Manag., vol. 83, pp. 58-72, 2014.

G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “A fuzzy logic energy management system for polygeneration microgrids,” Renew. Energy, vol. 41, pp. 315-327, 2012.

D. Tenfen and E. C. Finardi, “A mixed integer linear programming model for the energy management problem of microgrids,” Electr. Power Syst. Res., vol. 122, pp. 19-28, 2015.

M. Abedini, M. H. Moradi, and S. M. Hosseinian, “Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm,” Renew. Energy, vol. 90, pp. 430-439, 2016.

G. K. Venayagamoorthy and R. Sharma, “Dynamic energy management system for a smart microgrid,” IEEE Trans. Neural Networks Learning Syst., vol. 27, no. 8, pp. 1-14, 2016.

E. De Santis, A. Rizzi, and A. Sadeghian, “Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids,” Appl. Soft Comput. J., vol. 60, pp. 135-149, 2017.

C. S. Karavas, G. Kyriakarakos, K. G. Arvanitis, and G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manag., vol. 103, pp. 166-179, 2015.

H. S. V. S. K. Nunna, A. M. Saklani, A. Sesetti, S. Battula, S. Doolla, and D. Srinivasan, “Multi-agent based demand response management system for combined operation of smart microgrids,” Sustain. Energy, Grids Networks, vol. 6, pp. 25-34, 2016.

L. Ma, N. Liu, J. Zhang, and W. Tushar, “Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach,” IEEE Tran. Ind. Informatics, vol. 12, no. 5, 2016.

G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou, "Leader-follower strategies for energy management of multi-microgrids," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909-1916, Dec. 2013.

H. S. V. S. Kumar Nunna and S. Doolla, "Energy management in microgrids using demand response and distributed storage – A multiagent approach," IEEE Trans. Power Delivery, vol. 28, no. 2, pp. 939-947, April 2013.

L. Kumar, S. R. K, A. Verma, B. K. Panigrahi, and R. Kumar, “An operation window constrained strategic energy management (OWCSEM ) of micro grid with electric vehicle and distributed resources,” IET Gen. Trans. Dist., vol. 11, no. 3, 615-626.

How to Cite


Vidal-Martinez, C. S., Bueno-López, M., Flórez-Marulanda, J. F., and Restrepo, Álvaro R. (2024). Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería, 29(1), e19777.


Vidal-Martinez, C.S. et al. 2024. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería. 29, 1 (Jan. 2024), e19777. DOI:


Vidal-Martinez, C. S.; Bueno-López, M.; Flórez-Marulanda, J. F.; Restrepo, Álvaro R. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ing. 2024, 29, e19777.


VIDAL-MARTINEZ, Carlos Santiago; BUENO-LÓPEZ, Maximiliano; FLÓREZ-MARULANDA, Juan Fernando; RESTREPO, Álvaro Rene. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ingeniería, [S. l.], v. 29, n. 1, p. e19777, 2024. DOI: 10.14483/23448393.19777. Disponível em: Acesso em: 23 feb. 2024.


Vidal-Martinez, Carlos Santiago, Maximiliano Bueno-López, Juan Fernando Flórez-Marulanda, and Álvaro Rene Restrepo. 2024. “Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition”. Ingeniería 29 (1):e19777.


Vidal-Martinez, C. S. (2024) “Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition”, Ingeniería, 29(1), p. e19777. doi: 10.14483/23448393.19777.


C. S. Vidal-Martinez, M. Bueno-López, J. F. Flórez-Marulanda, and Álvaro R. Restrepo, “Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition”, Ing., vol. 29, no. 1, p. e19777, Jan. 2024.


Vidal-Martinez, Carlos Santiago, et al. “Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition”. Ingeniería, vol. 29, no. 1, Jan. 2024, p. e19777, doi:10.14483/23448393.19777.


Vidal-Martinez, Carlos Santiago, Maximiliano Bueno-López, Juan Fernando Flórez-Marulanda, and Álvaro Rene Restrepo. “Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition”. Ingeniería 29, no. 1 (January 13, 2024): e19777. Accessed February 23, 2024.


Vidal-Martinez CS, Bueno-López M, Flórez-Marulanda JF, Restrepo Álvaro R. Energy Management Systems for Microgrids: Evolution and Challenges within the Framework of the Energy Transition. Ing. [Internet]. 2024 Jan. 13 [cited 2024 Feb. 23];29(1):e19777. Available from:

Download Citation






Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.