DOI:

https://doi.org/10.14483/23448393.20025

Published:

2023-10-19

Issue:

Vol. 28 No. 3 (2023): September-December

Section:

Mechanical Engineering

Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders

Construcción de curvas límite de formabilidad para aceros de bajo carbono utilizados en la manufactura de cilindros a presión

Authors

Keywords:

anisotropy, deep drawing, metallic sheet, mechanical properties, stretching (en).

Keywords:

anisotropía (es).

Abstract (en)

Context: The aim of this study is to determine the formability of SG295 (2,2 mm thick) and SG325 (2,3 mm thick) steel sheets, as well as their relationship with the sheets’ behavior in deep drawing and stretching operations. To this effect, chemical, metallographic, and mechanical analyses of the sheets were carried out.

Method: The chemical analysis was carried out via optical emission spectrometry, and the metallographic structure was analyzed using the ASTM E3 standard. The intrinsic properties related to the formability of materials such as the elongation to fracture for a 50 mm gauge length, the conventional yield limit at 0,2% elongation, the ultimate strength, the strain hardening exponent, and the anisotropy coefficient at 15% elongation were determined through tensile tests according to ASTM E8M, ASTM E646, and ASTM 517. Forming limit curves were determined under ASTM E2218, for which a device was designed, built, and attached to a universal testing machine.

Results: The results for the SG295 and SG325 steel sheets were as follows: tensile strength; 450 and 520 MPa; elongation at fracture: 24,9 and 17,2%; strain hardening exponent: 0,24 and 0,19; normal anisotropy: 1,64 and 1,29; planar anisotropy: 0,23 and -0,02. The FLD0 determined from the formality limit curves (FLCs) for the two steel sheets showed ε1 values of 0,281 and 0,336, respectively.

Conclusions: Although the intrinsic properties (such as A50, n, and rm) of the SG295 steel sheet show values related to a greater formability, the FLCs show that SG325 steel performs slightly better due to its greater thickness.

Abstract (es)

Contexto: El objetivo de este trabajo fue determinar la formabilidad de láminas de acero SG295 (2,2 mm de grosor) y SG325 (2,3 mm de grosor), así como su relación con el comportamiento de estas frente a operaciones de estirado y embutido profundo. Para tal fin, se realizaron análisis químicos, metalográficos y mecánicos en las láminas.

Método: El análisis químico se realizó mediante espectrometría de emisión óptica, y la estructura metalográfica se analizó utilizando el estándar ASTM E3. Las propiedades intrínsecas relacionadas con la formabilidad de los materiales, tales como el alargamiento a la fractura para una longitud de referencia de 50 mm, el límite de rendimiento convencional al 0,2 % de elongación, la resistencia última, el exponente de endurecimiento por deformación y el coeficiente de anisotropía al 15 % de elongación se determinaron mediante pruebas de tracción de acuerdo con ASTM E8M, ASTM E646 y ASTM 517. Las curvas límite de formabilidad se determinaron bajo la norma ASTM E2218, para lo cual se diseñó, construyó y acopló un dispositivo a una máquina universal de ensayos.

Resultados: Los resultados para las láminas de acero SG295 y SG325 fueron los siguientes: resistencia a la tracción: 450 y 520 MPa; elongación hasta fractura: de 24,9 y 17,2 %; exponente de endurecimiento por deformación: 0,24 y 0,19; anisotropía normal: 1,64 y 1,29; anisotropía planar: 0,23 y -0,02. Los FLD0 determinados a partir de las curvas límite de formalidad (CLF) para las dos láminas de acero mostraron valores para ε1 de 0,281 y 0,336 respectivamente.

Conclusiones: Aunque las propiedades intrínsecas (como A50, n y rm) de la lámina de acero SG295 presentan valores relacionados con una mayor formabilidad, las CLF muestran que el acero SG325 se desempeña ligeramente mejor debido a su mayor espesor.

Author Biographies

Jhon Erikson Barbosa Jaimes, Universidad Nacional Abierta y a Distancia

Master of Mechanical Engineering, Universidad Nacional Experimental del Táchira UNET. Professor at Universidad Nacional Abierta y a Distancia (UNAD). He works as a researcher in the Gestindustriales EOCA research group.

Ismael Humberto García-Paez, Francisco de Paula Santander University

PhD in Inorganic Chemistry, validated as Doctor of Chemical Sciences by Universidad Autónoma de Madrid. Master of Metallurgic Engineering from Universidad Industrial de Santander. Professor at Universidad Francisco de Paula Santander (UFPS). He belongs to the Diseño Mecánico, Materiales y Procesos research group (GIDIMA), where he serves as a researcher.

Claudia Liliana Casadiego-Peralta, Universidad Libre de Colombia

Master of Materials Science and Technology, Universidad Francisco de Paula Santander. Professor at Universidad Libre de Colombia. She belongs to the Competitividad y Sostenibilidad para el Desarrollo research group (GICSD), where she serves as a researcher.

References

J. E. Barbosa, I. H. García, and J. Fuentes, “Estimación vía experimental de la formabilidad de láminas de aluminio de pureza comercial,” Rev. Lat. Metalurgia Mat., vol. 29, no 2, pp. 128-134, Dec. 2009. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522009000200008

D. R. Askeland and W. J. Wright, Ciencia e ingeniería de los materiales. México, D.F: Cengage Learning, 2017.

C .L. Casadiego, J. E. Barbosa, and I. H. García, “Determinación experimental de la formabilidad de láminas de acero SG295 mediante sus propiedades tensiles,” Rev. Col. Tec. Av., vol. 1, no. 29, pp. 9-15, 2017. [Online]. Available: https://doi.org/10.24054/16927257.v29.n29.2017.2480

ASM International, Metals handbook volume 14. Forming and forging. USA: ASM International, 1996.

A. E. Tekkaya and T. Altan, Sheet metal forming: Fundamentals. USA: ASM International, 2012. [Online]. Available: http://search.ebscohost.com.bibliotecavirtual.unad.edu.co/login.aspx?direct=true&db=nlebk&AN=513307&lang=es&site=eds-live&scope=site

R. Gedney, Tensile testing for determining the formability of sheet metals. Norwood, MA, USA: ADMET Inc., 2013.

J.A. Schey, Introduction to manufacturing processes. USA: McGraw-Hill, 2000.

S. Kalpakjian and S. R. Schmid, Manufactura, ingeniería y tecnología. México, DF: Pearson Educación, 2008.

R. Gedney, Measuring the plastic strain ratio of sheet metals. Norwood, MA, USA: ADMET Inc., 2013.

J. E. Barbosa, I. H. García, and V. García, “Análisis de la formabilidad de láminas de acero AISI 304 con diferentes espesores mediante sus propiedades de tracción” Rev. UIS Ing., vol. 21, no 4, pp. 97-106, Dec. 2022. https://doi.org/10.18273/revuin.v21n4-2022009

Standard test methods for determining forming limit curves, ASTM E 2218, ASTM International, West Conshohocken, 2015.

S. K. Paul, “Prediction of complete forming limit diagram from tensile properties of various steel sheets by a nonlinear regression based approach,” J. Manuf. Processes, vol. 23, pp. 192-200, 2016. https://doi.org/10.1016/j.jmapro.2016.06.005

S. K. Paul, “Controlling factors of forming limit curve: A review,” Adv. Ind. Manuf. Eng., vol. 2, art. 100033, 2021. https://doi.org/10.1016/j.aime.2021.100033

R. Shang, Z. Shao, and J. Lin, “A review on modeling techniques for formability prediction of sheet metal forming,” Int. J. Lightweight Mat. Manuf., vol. 1, no. 3, pp. 115-125, Sep. 2018. https://doi.org/10.1016/j.ijlmm.2018.06.003

Standard test methods for tension testing of metallic materials [metric], ASTM E 8M, ASTM International, West Conshohocken, 2013.

Standard test methods for tensile strain-hardening exponents (n – values) of metallic sheet materials, ASTM E 646, ASTM International, West Conshohocken, 2016.

Standard test methods for plastic strain ratio r for sheet metal, ASTM E 517, ASTM International, West Conshohocken, 2018.

Steel sheet, plates and strip for gas cylinders, JIS G 3116, Japanese Standards Association (JIS), Tokyo, 2020.

M. J. Serenelli, M. A. Bertinetti, and J. W Signorelli, “Influencia de la textura cristalográfica en la dispersión de coeficientes de lankford en una chapa de acero galvanizada de bajo carbono,” Mec. Comp., vol. XXVII, no. 14, pp. 993- 1001, Nov. 2008. [Online]. Available: https://cimec.org.ar/ojs/index.php/mc/article/view/1467

J. A. Newell, Ciencia de materiales, aplicaciones en ingeniería. México, DF: Alfaomega, 2010.

D. R. Kumar, “Formability analysis of extra-deep drawing steel,” J. Mat. Processing Tec., vol. 130-131, pp. 31-41, Dec. 2002. https://doi.org/10.1016/S0924-0136(02)00789-6

K. Sipos, J. Martínez, N. Burgos, and H. Pesenti, “Aceros para embutido profundo: fabricación, caracterización, microestructura y texturas,” Rev. Metalurgia, vol. 41, no. Extra, pp. 58-63, Dec. 2005. http://dx.doi.org/10.3989/revmetalm.2005.v41.iExtra.999

S. P. Keeler and W. G. Brazier, “Relationship between laboratory material characterization and press-shop formability,” Microalloying, vol. 75, pp. 517-530, 1975.

How to Cite

APA

Barbosa Jaimes, J. E., García-Paez, I. H., and Casadiego-Peralta, C. L. (2023). Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders. Ingeniería, 28(3), e20025. https://doi.org/10.14483/23448393.20025

ACM

[1]
Barbosa Jaimes, J.E. et al. 2023. Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders. Ingeniería. 28, 3 (Oct. 2023), e20025. DOI:https://doi.org/10.14483/23448393.20025.

ACS

(1)
Barbosa Jaimes, J. E.; García-Paez, I. H.; Casadiego-Peralta, C. L. Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders. Ing. 2023, 28, e20025.

ABNT

BARBOSA JAIMES, Jhon Erikson; GARCÍA-PAEZ, Ismael Humberto; CASADIEGO-PERALTA, Claudia Liliana. Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders. Ingeniería, [S. l.], v. 28, n. 3, p. e20025, 2023. DOI: 10.14483/23448393.20025. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/20025. Acesso em: 28 nov. 2023.

Chicago

Barbosa Jaimes, Jhon Erikson, Ismael Humberto García-Paez, and Claudia Liliana Casadiego-Peralta. 2023. “Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders”. Ingeniería 28 (3):e20025. https://doi.org/10.14483/23448393.20025.

Harvard

Barbosa Jaimes, J. E., García-Paez, I. H. and Casadiego-Peralta, C. L. (2023) “Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders”, Ingeniería, 28(3), p. e20025. doi: 10.14483/23448393.20025.

IEEE

[1]
J. E. Barbosa Jaimes, I. H. García-Paez, and C. L. Casadiego-Peralta, “Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders”, Ing., vol. 28, no. 3, p. e20025, Oct. 2023.

MLA

Barbosa Jaimes, Jhon Erikson, et al. “Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders”. Ingeniería, vol. 28, no. 3, Oct. 2023, p. e20025, doi:10.14483/23448393.20025.

Turabian

Barbosa Jaimes, Jhon Erikson, Ismael Humberto García-Paez, and Claudia Liliana Casadiego-Peralta. “Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders”. Ingeniería 28, no. 3 (October 19, 2023): e20025. Accessed November 28, 2023. https://revistas.udistrital.edu.co/index.php/reving/article/view/20025.

Vancouver

1.
Barbosa Jaimes JE, García-Paez IH, Casadiego-Peralta CL. Construction of Formability Limit Curves for Low-Carbon Steels Used in the Manufacture of Pressure Cylinders. Ing. [Internet]. 2023 Oct. 19 [cited 2023 Nov. 28];28(3):e20025. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/20025

Download Citation

Visitas

18

Dimensions


PlumX


Downloads

Download data is not yet available.
Loading...