
DOI:
https://doi.org/10.14483/23448393.21035Published:
2023-10-19Issue:
Vol. 28 No. 3 (2023): September-DecemberSection:
Systems EngineeringPreliminary Approach for UAV-Based Multi-Sensor Platforms for Reconnaissance and Surveillance applications
Enfoque preliminar de una plataforma multi-sensor basada en UAV para aplicaciones de reconocimiento y vigilancia
Keywords:
Unmanned Aerial Vehicles (UAVs), multi-sensor reconnaissance and surveillance system (MRSS), geospatial intelligence (GEOINT), signals intelligence (SIGINT), measurement and signature intelligence (MASINT) (en).Keywords:
vehículos aéreos no tripulados (UAV), istema de reconocimiento y vigilancia multisensor (MRSS), inteligencia geoespacial (GEOINT), inteligencia de señales (SIGINT), inteligencia de firmas (MASINT) (es).Downloads
Abstract (en)
Context: Unmanned Aerial Vehicles (UAVs) equipped with remote sensing platforms have become increasingly popular due to their applications in aerial surveillance, environmental control, and disaster response. However, the limited flight range and on-board energy resources of UAVs pose significant challenges to their practical deployment and operating efficiency, which has led to the exploration of energy-efficient platforms for remote sensing.
Method: This paper proposes a preliminary approach for UAV multi-sensor reconnaissance and surveillance platforms (MRSS) that target low energy consumption. The approach implemented four sensor modules controlled by one multi-functional integrated edge computer for control and data collection, which can be interchanged according to battery lifetime requirements.
Results: The main contribution of this work was an analysis of the energy consumption behavior of sensor modules managed by an embedded system with edge computing capabilities as the central control unit.
Conclusions: The high energy consumption associated with modules such as GEOINT leads to deep discharge in excess of 20 % DOD, resulting in a maximum battery degradation of 2,4 years.
Abstract (es)
Contexto: Los vehículos aéreos no tripulados (UAV) equipados con plataformas de sensores remotos se han hecho cada vez más populares debido a sus aplicaciones en vigilancia aérea, control medioambiental y respuesta ante catástrofes. Sin embargo, la limitada autonomía de vuelo y los limitados recursos energéticos a bordo de los UAV plantean importantes retos para su despliegue práctico y su eficiencia operativa, lo que ha llevado a explorar plataformas energéticamente eficientes para la teledetección.
Métodos: En este artículo se propone un enfoque preliminar para plataformas de reconocimiento y vigilancia multisensor (MRSS) dirigidas a un bajo consumo energético. El enfoque implementa cuatro módulos de sensores controlados por un ordenador multifuncional de borde integrado para la recopilación de datos, que pueden intercambiarse en función de los requisitos de duración de la batería.
Resultados: La principal contribución de este trabajo fue un análisis del comportamiento del consumo de energía de los módulos de sensores gestionados por un sistema integrado con capacidad de computación frontera como unidad de control central.
Conclusiones: El elevado consumo de energía asociado a módulos como el GEOINT conduce a una descarga profunda superior a un DOD de 20 % que provoca una degradación máxima de 2,4 años de la batería.
References
G. Keaton, "LiDAR surveying technology advantages,"2021. [Online]. Available:https://ecko360industrial.com/2021/06/28/lidar-surveying-technology-advantages/
H. Yao, R. Qin, and X. Chen, Ünmanned aerial vehicle for remote sensing applications — A review,"Remote Sens., vol. 11, no. 12, art. 1443, 2019. https://www.mdpi.com/2072-4292/11/12/1443
C. Yinka-Banjo and O. Ajayi, "Sky-farmers: Applications of unmanned aerial vehicles (UAV) in agriculture,ïn Autonomous Vehicles, G. Dekoulis, Ed., London, UK: IntechOpen, 2019, ch. 6. https://doi.org/10.5772/intechopen.89488
J. Cuaran and J. Leon, Çrop monitoring using unmanned aerial vehicles: A review". Agricultural Reviews, vol. 42, no. 2, pp. 121-132, 2021. https://doi.org/10.18805/ag.R-180
M. Pashine and P. Mundhada, Ïmplementation of real time monitoring in the field of agriculture,"Int. Res. J. Eng. Technol., vol. 8, no. 12, pp. 665-669, 2021. https://www.irjet.net/archives/V8/i12/IRJET-V8I12114.pdf
Z. Yang et al.,ÜAV remote sensing applications in marine monitoring: Knowledge visualization and review,"Sci. Total Environ., vol. 838, part 1, art. 155939, 2022. https://doi.org/10.1016/j. scitotenv.2022.155939
P. Maddikunta, S. Hakak, M. Alazab, S. Bhattacharya, T. Gadekallu, W. Khan, and Q. Pham, Ünmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges,"IEEE Sens. J.,vol. 21, no. 16, pp. 17608-17619, 2021. https://doi.org/10.1109/JSEN.2021.3049471
J. Pavón, J. Gómez-Sanz, A. Fernández-Caballero, and J. Valencia-Jiménez, "Development of intelligent multisensor surveillance systems with agents,"Robotics Auton. Syst., vol. 55, no. 12, pp. 892-903, 2007. https://doi.org/10.1016/j.robot.2007.07.009
H.Abdullahi, F. Mahieddine, and R. Sheriff, "Technology impact on agricultural productivity: A review of precision agriculture using unmanned aerial vehicles,ïn Int. Conf. Wireless Sat. Syst., 2015, pp. 388-400. https://doi.org/10.1007/978-3-319-25479-1_29
S. Liaghat and S. Balasundram, .A review: The role of remote sensing in precision agriculture,"American J. Agricul. Biolog. Sci., vol. 5, no. 1, pp. 50-55, 2010. https://thescipubcom/pdf/ajabssp.2010.50.55.pdf
N. Yin, R. Liu, B. Zeng, and N. Liu,. A review: UAV-based remote sensing,"IOP Conf. Ser. Mater. Sci. Eng., vol. 490, art. 062014, 2019. https://iopscience.iop.org/article/10.1088/1757-899X/490/6/062014/pdf
A. Opeyemi and N. David, An RGB sensor-based aerial robotic platform for sustainable precision agriculture,"2020. [Online]. Available>https://ic-sd.org/wp-content/uploads/2020/11/Abioye-Ayodeji.pdf
S. Tzafestas, Introduction To mobile robot control, Amsterdam, The Netherlands: Elsevier, 2014. https://doi.org/10.1016/B978-0-12-417049-0.00012-2
P. Velusamy, S. Rajendran, R. Mahendran, S. Naseer, M. Shafiq, and J. Choi, Ünmanned aerial vehicles (UAV) in precision agriculture: Applications and challenges,"Energies,vol. 15, no. 1, art. 217, 2022. https://doi.org/10.3390/en15010217
A. Feng, J. Zhou, E. Vories, K. Sudduth, and M. Zhang, "Yield estimation in cotton using UAV-based multi-sensor imagery", Biosyst. Eng., vol. 193, pp. 101-114, 2020. https://doi.org/10.1016/j. biosystemseng.2020.02.014
A. Matese and S. Di Gennaro, "Practical applications of a multisensor UAV platform based on multispectral, thermal, and RGB high-resolution images in precision viticulture,""Agriculture, vol. 8, no. 7, art. 116, 2018. https://doi.org/10.3390/agriculture8070116
S. Di Gennaro et al., "Multisensor approach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN) proximal sensing,"Scientia Horticulturae, vol. 221, pp. 83-87, 2017. https://doi.org/10.1016/j. scienta.2017.04.024
P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. Alexandridis, and G. Zalidis, .An autonomous multi-sensor UAV system for reduced-input precision agriculture applications,ïn 2016 24th Med. Conf. Control Automation (MED), 2016, pp. 60-64. https://doi.org/10.1109/MED.2016.7535938
M. Nagai, T. Chen, A. Ahmed, and R. Shibasaki, ÜAV borne mapping by multi sensor integra-tion,"2008. [Online]. Available: https://www.isprs.org/proceedings/xxxvii/congress/1_pdf/207.pdf
F. Liu, J. Shan, B. Xiong, and F. Zheng, . A real-time and multi-sensor-based landing area recognition system for UAVs,"Drones, vol. 6, no. 5, art. 118, 2022. https://doi.org/10.3390/drones6050118
M. Stein, S. Bargoti, and J. Underwood, Ïmage based mango fruit detection, localisation and yield estimation using multiple view geometry,"Sensors, vol. 16, no. 11, art. 1915, 2016. https://doi.org/10.3390/s16111915
M. Maimaitijiang et al., Ünmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine,"ISPRS J. Photogramm. Remote Sens., vol. 134, pp. 43-58, 2017. https://doi.org/10.1016/j.isprsjprs.2017.10.011
G. Bai, Y. Ge, W. Hussain, P. Baenziger, and G. Graef, .A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding,"Comp. Electronics Agricul., vol. 128, pp. 181-192, 2016. https://doi.org/10.1016/j.compag.2016.08.021
A. Comar, P. Burger, B. Solan, B. Frederic, F. Daumard, and H. Jean-François, .A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results,"Funct. Plant Biol., vol. 39, no. 11, pp. 914-924, 2012. https://doi.org/10.1071/fp12065
P. Andrade-Sánchez et al., "Development and evaluation of a field-based high-throughput phenotyping platform,"Funct. Plant Biol., vol. 41, no. 1, pp. 68-79, 2014. https://doi.org/10. 1071/fp13126
E. Torres-Garzón, J. Guevara, and Y. Mendoza-Prieto, .Estudio sobre el desarrollo de un prototipo para monitoreo del espectro radioelectrónico utilizando SDR,"Revista Perspectivas En Inteligencia, vol. 14, no. 23, pp. 303-323, 2022. https://doi.org/10.47961/2145194X.344
M. Terán, J. Aranda, J. Marín, E. Uchamocha, and G. Corzo-Ussa, .A methodology for signals intelligence using non-conventional techniques and software-defined radio,"presented at the 2021 IEEE Col. Conf. Comm. Comp. (COLCOM), Cali, Colombia, May 26-28, 2021. https://doi.org/10. 1109/COLCOM52710.2021.9486297
B. Sharma and G. Ritchie, "High-throughput phenotyping of cotton in multiple irrigation environments,"Crop Sci., vol. 55, no. 2, pp. 958-969, 2015. https://doi.org/10.2135/cropsci2014.04.0310
R. Xu, C. Li, and S. Bernardes, "Development and testing of a UAV-based multi-sensor system for plant phenotyping and precision agriculture,"Remote Sens., vol. 13, no. 17, art. 3517, 2021. https://www.mdpi.com/2072-4292/13/17/3517
O. Montesinos-López et al., "Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data,"Plant Meth., vol. 13, art. 4, 2017. https://doi.org/10.1186/s13007-016-0154-2
S. Fei et al., ÜAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat,"Prec. Agricul., vol. 24, pp. 187-212, 2022. https://doi.org/10.1007/s11119-022-09938-8
M. Vlaminck, L. Diels, W. Philips, W. Maes, R. Heim, B. Wit, and H. Luong, .A multisensor UAV payload and processing pipeline for generating multispectral point clouds,"Remote Sens., vol. 15, no. 6, art. 1524, 2023. https://doi.org/10.3390/rs15061524
X. Li and A. Savkin, "Networked unmanned aerial vehicles for surveillance and monitoring: A survey,"Future Internet, vol. 13, no. 7, art. 174, 2017. https://doi.org/10.3390/fi13070174
A. Gupta, H. Gupta, P. Kumari, R. Mishra, S. Saraswat, and T. Dutta, .A real-time precision agriculture monitoring system using mobile sink in WSNs”, in 2018 IEEE Int. Conf. Adv. Net. Telecom. Syst. (ANTS), Indore, India, December 16-19, 2018. https://doi.org/10.1109/ANTS.2018.8710048
Y. Mendoza-Prieto, S. Sopo, and E. Torres-Garzón, .Evaluación de captadores fotovoltaicos para suministro complementario de energía en aeronaves remotamente tripuladas,"Revista Perspectivas en Inteligencia, vol. 12, no. 21, pp. 261-274, 2021. https://doi.org/10.47961/2145194X.226
J. Machado, "Software defined radio: Basic principles and applications,"Revista Facultad de Ingeniería, vol. 24, no. 38, pp. 79-96. http://www.scielo.org.co/pdf/rfing/v24n38/v24n38a07.pdf
K. Mallon, F. Assadian, and B. Fu, .Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan,"Energies, vol. 10, no. 7, art. 943, 2017. https://doi.org/10. 3390/en10070943
I. Acero et al., "Method for validating CubeSat satellite EPS through power budget analysis aligned With mission requirements,"IEEE Access, vol. 11, pp. 43316-43332, 2023. https://doi.org/10. 1109/ACCESS.2023.3271596
C. Wu, J. Fu, X. Huang, X. Xu, and J. Meng, "Lithium-ion battery health state prediction based on VMD and DBO-SVR,"Energies, vol. 16, no. 10, art. 3993, 2023. https://doi.org/10.3390/en16103993
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Nicolás Amézquita-Gómez, Sergio Ramiro González-Bautista, Marco Teran, Camilo Salazar, John Corredor, Germán Darío Corzo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.