DOI:

https://doi.org/10.14483/23448393.23272

Published:

2025-12-09

Issue:

Vol. 30 No. 3 (2025): September-December

Section:

Electrical, Electronic and Telecommunications Engineering

Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting

Análisis experimental del rendimiento de un circuito basado en MOS de par cruzado de dos etapas en la captación de energía solar y piezoeléctrica

Authors

Keywords:

piezoelectric energy, cross-coupled MOS, voltage multiplier, solar boost converter, solar energy harvesting (en).

Keywords:

energía piezoeléctrica, MOS cross-coupled, multiplicador de voltaje, convertidor elevador solar, recolección de energía solar (es).

Downloads

Abstract (en)

Context: Energy harvesting has positioned itself an emerging area of research due to recent developments in low-power electronics, the Internet of Things, and artificial intelligence. Various diode-based circuits and alternatives have been proposed in the literature, but the application of CMOS cross-coupled circuits, specifically in piezoelectric energy-harvesting systems, has not been properly explored.

Method: An experimental study was conducted in order to assess the performance of a two-stage cross-couple MOS-based voltage multiplier in piezoelectric and solar energy harvesting. A piezoelectric disc was used to evaluate the output. The piezoelectric output was obtained by applying a small pressure to the input, and a 6 V panel was employed in the solar energy setup.

Results: The proposed circuit provides a 1.91-fold voltage gain in the piezoelectric energy harvester.

Conclusions: The two-stage MOS-based cross-coupled voltage multiplier circuit performs better than the diode-based alternative in the piezoelectric energy harvester. These experimental results show encouraging prospects for green energy, low-power electronics, and Internet of Things applications, among others.

Abstract (es)

Contexto: La recolección de energía se ha posicionado como un área de investigación emergente debido a los desarrollos recientes en electrónica de baja potencia, el Internet de las Cosas y la inteligencia artificial. La literatura ha propuesto diversos circuitos basados en diodos y otras alternativas, pero la aplicación de circuitos CMOS de tipo cross-coupled, específicamente en sistemas piezoeléctricos de recolección de energía, no ha sido explorada adecuadamente.

Método: Se llevó a cabo un estudio experimental para evaluar el desempeño de un multiplicador de voltaje de dos etapas basado en transistores MOS tipo cross-coupled en la recolección de energía piezoeléctrica y solar. Se utilizó un disco piezoeléctrico para evaluar la salida. La señal piezoeléctrica se obtuvo aplicando una pequeña presión en la entrada, y en la configuración solar se empleó un panel de 6 V.

Resultados: El circuito propuesto proporciona una ganancia de voltaje de 1.91 veces en el recolector de energía piezoeléctrica.

Conclusiones: El circuito multiplicador de voltaje de dos etapas, basado en transistores MOS tipo cross-coupled, presenta un mejor desempeño que la alternativa basada en diodos en el recolector de energía piezoeléctrica. Estos resultados experimentales brindan perspectivas alentadoras para aplicaciones de energía verde, electrónica de baja potencia y el Internet de las Cosas, entre otras.

References

[1] M. Alibakhshikenari, V. B. Singh, C. H. See, R. A. A. Alhameed, F. Falcone, and E. Limiti,

“Energy harvesting circuit with high RF-to-DC conversion efficiency,” in Proc. IEEE Int. Symp. Antennas Propag. North Amer. Radio Sci. Meet., Montreal, QC, Canada, 2020, pp. 1299–1300. https://doi.org/10.1109/IEEECONF35879.2020.9329604

[2] N. Singh, “Low profile multiband rectenna for efficient energy harvesting at microwave frequencies,” Int. J. Elect., vol. 106, no. 12, pp. 2057–2071, 2019. https://doi.org/10.1080/00207217.2019.1636302

[3] U. Alvarado, A. Juanicorena, I. Adin, B. Sedano, I. Gutiérrez, and J. D. No, “Energy harvesting technologies for low-power electronics,” Trans. Emerg. Telecomm. Tech., vol. 23, no. 8, pp. 728–741, 2012. https://doi.org/10.1002/ett.2529

[4] M. D. Ker, S. L. Chen, and C. H. Tsai, “A new charge pump circuit dealing with gate-oxide reliability issue in low-voltage processes,” in Proc. IEEE Int. Symp. Circ. Syst. (ISCAS), Vancouver, BC, Canada, 2004, pp. 321–324.

[5] B. Jyostna and S. Murthy, “Low power CMOS start-up charge pump with power gating technique,” Int. J. Sci. Eng. Res., vol. 52, no. 4, pp. 1114–1118, 2016.

[6] W. Samakkhee, K. Phaebua, and T. Lertwiriyaprapa, “5.8 GHz rectifier circuit for electromagnetic energy harvesting system,” in Proc. Int. Symp. Ant. Propag. (ISAP2017), Phuket, Thailand, 2017, pp. 133–136. https://doi.org/10.1109/ISANP.2017.8229029

[7] F. Sari and Y. Uzun, “A comparative study: Voltage multipliers for RF energy harvesting system,” Comm. Fac. Sci. Univ. Ankara, vol. 61, no. 1, pp. 2–23, 2019. https://doi.org/10.33769/aupse.469183

[8] H. Goncalves, J. Fernandes, and M. Martins, “A study on MOSFET rectifiers maximum output voltage for RF power harvesting circuits,” in Proc. IEEE Int. Symp. Circ. Syst. (ISCAS), Lisbon, Portugal, 2013, pp. 2964–2967. https://doi.org/10.1109/ISCAS.2013.6572501

[9] Q. Li, J. Wang, D. Niu, and Y. Inoue, “A two-stage CMOS integrated highly efficient rectifier for vibration energy harvesting applications,” J. Int. Council Elect. Eng., vol. 4, no. 4, pp. 336–340, 2014. https://doi.org/10.1080/22348972.2014.11011893

[10] G. Chong et al., “CMOS cross-coupled differential-drive rectifier in subthreshold operation for ambient RF energy harvesting – Model and analysis,” IEEE Trans. Circ. Syst II Exp. Briefs, vol. 66, no. 12, pp. 1942–1946, 2019. https://doi.org/10.1109/TCSII.2019.2895659

[11] S. S. Chouhan and K. Halonen, “A modified cross coupled rectifier based charge pump for energy harvesting using RF to DC conversion,” in Proc. Eur. Conf. Circ. Theor. Des. (ECCTD), Dresden, Germany, 2013, pp. 1–4. https://doi.org/10.1109/ECCTD.2013.6662231

[12] S. Fan et al., “A cross-coupled active rectifier–booster regulator integrated circuit for broadband wireless energy harvesting system,” in MTT-S Int. Wireless Symp. (IWS), Shanghai, China, 2020, pp. 1–3. https://doi.org/10.1109/IWS49314.2020.9359959

[13] M. E. C. Andam, C. M. P. Canja, and M. A. Capilayan, “A design of self-biased cross coupled rectifier with integrated dual threshold voltage for RF energy harvesting application,” in Proc. 8th Int. Conf. Amb. Syst. Net. Tech., Madeira, Portugal, 2017, pp. 384–391.

[14] J. Banejee, “Comparison of cross couple MOS based and Schottky diode based RF energy harvesting circuits using Wilkinson power combiner,” Frequenz, vol. 77, pp. 133–146, 2023. https://doi.org/10.1515/freq-2022-0018

[15] M. W. Aljibory, H. T. Hashim, and W. N. Abbas, “A review of solar energy harvesting utilising a photovoltaic–thermoelectric integrated hybrid system,” Mater. Sci. Eng., vol. 1067, art. 012115, 2021. https://doi.org/10.1088/1757-899X/1067/1/012115

[16] L. Xiao, Y. S. Wu, and L. S. Yang, “Parametric study on thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator,” Int. J. Energy Res., vol. 42, pp. 656–672, 2018. https://doi.org/10.1002/er.3849

[17] D. Hao et al., “Solar energy harvesting technologies for PV self-powered applications: A comprehensive review,” Renew. Energy, vol. 188, pp. 678–697, 2022. https://doi.org/10.1016/j.renene.2022.02.066

[18] D. K. Sah, N. Mazumdar, P. Pal, and T. Amgoth, “A comprehensive study of solar energy harvesting system in wireless sensor networks,” in Proc. Int. Conf. Elect. Electron. Comp. Eng. (UPCON), Prayagraj, India, 2022, pp. 1–6. https://doi.org/10.1109/UPCON56432.2022.9986433

[19] N. Samal and O. J. Shiney, “Energy harvesting using piezoelectric transducers: A review,” J. Sci. Res., vol. 65, no. 3, pp. 3842–3847, 2021. https://doi.org/10.37398/JSR.2021.650320

[20] M. H. Amiri et al., “Piezoelectric energy harvesters: A critical assessment and a standardized reporting of power-producing vibrational harvesters,” Nano Energy, vol. 106, pp. 1–35, 2023. https://doi.org/10.1016/j.nanoen.2022.108073

[21] J. Ghazanfarian, M. Mohammadi, and K. Uchino, “Piezoelectric energy harvesting: A systematic review of reviews,” Actuators, vol. 10, no. 12, pp. 1–40, 2021. https://doi.org/10.3390/act10120312

[22] S. Dam and P. Mandal, “An integrated DC–DC boost converter having low-output ripple suitable for analog applications,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5108–5117, 2018. https://doi.org/10.1109/TPEL.2017.2735491

[23] M. Maalandish, S. H. Hosseini, S. Ghasemzadeh, and E. Bab, “A novel multiphase high step-up DC/DC boost converter with lower losses on semiconductors,” IEEE J. Emer. Sel. Topics Power Electron., vol. 7, no. 1, pp. 541–554, 2019. https://doi.org/10.1109/JESTPE.2018.2830510

[24] L. Rodríguez, E. Raygada, C. Silva, and J. Saldaña, “Design of a CMOS cross-coupled voltage doubler,” in Proc. IEEE ANDESCON, Arequipa, Peru, 2016, pp. 1–4. https://doi.org/10.1109/ANDESCON.2016.7836258

[25] D. Kumar, P. Chaturvedi, and N. Jejurikar, “Piezoelectric energy harvester design and power conditioning,” in Proc. Conf. Elect. Electron. Comp. Sci., 2014, pp. 1–6. https://doi.org/10.1109/SCEECS.2014.6804491

[26] G. Revathi and R. Ingitham, “Piezoelectric energy harvesting system in mobiles with keypad and sound vibrations,” Int. J. Eng. Res. Tech. (IJERT), vol. 1, no. 4, pp. 1–4, 2012.

[27] M. H. Amiri et al., “Piezoelectric energy harvesters: A critical assessment and a standardized reporting of power-producing vibrational harvesters,” Nano Energy, vol. 106, pp. 1–12, 2023. https://doi.org/10.1016/j.nanoen.2022.108073

How to Cite

APA

BANERJEE, J. (2025). Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting. Ingeniería, 30(3), e23272. https://doi.org/10.14483/23448393.23272

ACM

[1]
BANERJEE, J. 2025. Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting. Ingeniería. 30, 3 (Dec. 2025), e23272. DOI:https://doi.org/10.14483/23448393.23272.

ACS

(1)
BANERJEE, J. Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting. Ing. 2025, 30, e23272.

ABNT

BANERJEE, JOYDEEP. Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting. Ingeniería, [S. l.], v. 30, n. 3, p. e23272, 2025. DOI: 10.14483/23448393.23272. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/23272. Acesso em: 24 dec. 2025.

Chicago

BANERJEE, JOYDEEP. 2025. “Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting”. Ingeniería 30 (3):e23272. https://doi.org/10.14483/23448393.23272.

Harvard

BANERJEE, J. (2025) “Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting”, Ingeniería, 30(3), p. e23272. doi: 10.14483/23448393.23272.

IEEE

[1]
J. BANERJEE, “Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting”, Ing., vol. 30, no. 3, p. e23272, Dec. 2025.

MLA

BANERJEE, JOYDEEP. “Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting”. Ingeniería, vol. 30, no. 3, Dec. 2025, p. e23272, doi:10.14483/23448393.23272.

Turabian

BANERJEE, JOYDEEP. “Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting”. Ingeniería 30, no. 3 (December 9, 2025): e23272. Accessed December 24, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/23272.

Vancouver

1.
BANERJEE J. Experimental Performance of a Two-Stage Cross-Coupled MOS-Based Circuit in the Solar and Piezoelectric Energy Harvesting. Ing. [Internet]. 2025 Dec. 9 [cited 2025 Dec. 24];30(3):e23272. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/23272

Download Citation

Visitas

0

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
291
145

Indexed in

Editor & editorial board
profiles
Loading...