Algunos problemas provenientes de la Teoría de Rayos Aplicada a las Ecuaciones de Onda Sísmica

Some open problems from Ray Theory Applied to Seismic Wave Equations

  • Carlos César Piedrahita Escobar Departamento de Ciencias Básicas, Universidad de Medellín
Keywords: Ray theory, Eikonal Equation, Transport Equation. (en_US)
Keywords: Teoría de Rayos, Ecuacional Iconal, Ecuación de Transporte (es_ES)

Abstract (es_ES)

La parte inicial de este artículo revisa la aplicación de la teoría de rayos en las ecuaciones de onda sísmicas, en particular, la propagación de ondas P. La parte final del artículo se centra en un par de problemas que se generan a partir del análisis utilizando teoría de rayos. Estos problemas posee un interés académico en su formulación matemática, además tienen un interés práctico para el  área de la Geofísica de Exploración y/o Producción.

Abstract (en_US)

This paper gives an overview of the application of ray theory in the seismic wave equations, in particular, to P wave propagation. In addition, a couple of open problems that are obtained from the analysis using ray theory are stated. These problems have an academic interest in their mathematical formulation, and also have a practical application in Exploration and /or Production Geophysics.

Downloads

Download data is not yet available.

References

Azmy S. Ackleh, E.J. Allen, R.B. Hearfott, and P. Seshaiyer. Classical and Modern Numerical Analysis. Chapman & Hall/CRC, Boca Raton, FL USA, 2010.

K. Aki and P Richards. Quantitative Seismology. Theory and Methods, Volume I. W.H. Freeman and Company, New York, 1980.

V.I. Arnold. Mathematical methods of Classical Mechanics. Springer-Verlag, Nueva York,1978.

V.M. Babic and V.S. Buldyrev. Short-wavelenght diffraction theory (Asymptotic methods). Springer, Berlin, 1991.

N. Blestein. Mathematical Methods for Wave Phenomena. Academic Press, New York, 1984.

N. Blestein, J.K. Cohen, and J.W.H. Stockwell Jr. Mathematics of Multidimensional Seismic Imaging. Springer, Berlin, 2001.

A. Bona and M. Slawinski. Wavefronts and Rays: As Characteristics and Asymptotics. World Scientifi c Publisher Company, Pte. Ltd, Hackensack, NJ, USA, 2011.

J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization. Prentice Hall, Engle- wood Cliffs, New Jersey, 1983.

P. Docherty. A Fast Ray Tracing Routine for laterally Inhomogeneous Medsi, CWP-018. PhD thesis, Colorado School of Mines, Golden, Colorado, EUA, 1985.

P. Docherty. Ray theoretical modeling, migration and inversion in two-and-one-halfdimensional layered acoustic media, Research Report number CWP-051. Center for Wave Phenomena, Colorado school of Mines, Golden, 1987.

Lawrence C. Evans. Partial Differential Equations: Second Edition. AMS, Providence, Rhode Island, USA, 2010.

S. Gray. Effi cient traveltime calculations for kirchhoff migration. Geophysics, 51:1685–1688, 1986.

V. Cˆ erveny. Seismic Ray Theory. Cambridge University Press, Cambridge, 2001.

V. Cˆ erveny, I.A. Molotkov, and Psencik. Ray Method in Seismology. Universita Karlova, Praha, 1977.

H.B. Keller and D.J. Perozzi. Fast seismic ray tracing. SIAM J. APPL. MATH., 43(4):981–992, 1983.

Y. Kravtsov and Y.I. Orlov. Geometrical Optics of Inhomogeneous Media. Springer Verlag, Berlin, 1990.

Carlos César Piedrahita. Generalização do Método de Continuação no Traçãmento de Raios utilizando o Conceito dos Autômatos Finitos. PhD thesis, Universidad Estadual de Campinas, Campinas, SP, Brasil, 2002.

How to Cite
Piedrahita Escobar, C. C. (2013). Some open problems from Ray Theory Applied to Seismic Wave Equations. Ingeniería, 18(2). https://doi.org/10.14483/udistrital.jour.reving.2013.2.a07
Published: 2013-11-05
Section
Sección Especial: Mejores Trabajos “VI Simposio en Optimización”