Análisis y simulación del comportamiento de vorticidad para el modelo de partícula auto-propulsada

Analysis and simulation of vortex behavior for self-propelled particle model

  • Helbert Eduardo Espitia Cuchango Universidad Distrital Francisco José de Caldas
  • Jorge Iván Sofrony Esmeral Universidad Nacional de Colombia
Palabras clave: Model, particle, self-propelled, vortex (en_US)
Palabras clave: Autopropulsión, modelo, partícula, vórtice. (es_ES)

Resumen (es_ES)

Contexto: En este documento se realizan varios analisis a un modelo enjambre de partículas autopropulsadas. Con estos análisis se busca mostrar que el enjambre tiene la capacidad de realizar movimientos circulares, lo cual también se presenta de forma cualitativa mediante varias simulaciones del modelo.

Método: Sobre los análisis realizados se tiene en primer lugar el cálculo de puntos de equilibrio, posteriormente se observa la conservación de energía y momento angular, finalmente se realiza la estimación del radio de giro de las partículas cuando estas realizan movimientos circulares. Las simulaciones se realizan considerando los análisis de tal forma que se pueden observar las características más relevantes del modelo estudiando.

Resultados: De los análisis realizados se aprecia que la componente de interacción entre partículas actúa como una fuerza centrípeta dirigida al centro de rotación del enjambre de tal forma que las partículas pueden describir una trayectoria circular a una velocidad constante.

Conclusiones: Mediante los análisis realizados se identificaron varias características importantes del modelo estudiado las cuales de muestran de forma cualitativa mediante simulaciones.

Palabras clave: Autopropulsión, modelo, partícula, vórtice. 

Resumen (en_US)

Context: In this paper several analyzes are performed to a self-propelled swarm model; this model permits to describe the swarm behavior. It is characterized by having both, linear and circular movements which are utilized to search nourishment as well as to evade obstacles and predators.

Method: In regard of the analyzes performed, it is first calculated the equilibrium points, then the conservation of energy and angular momentum is observed. Finally, it is performed an estimate of the rotation radius when the particles made circular motions. The simulations were made considering the analyzes in order to observe the most important characteristics of the studied model.

Results: From the analyzes, it is seen that the interaction among particles acts as a centripetal force directed to the rotation center of the swarm, such that the particles can describe a circular trajectory at a constant speed.


Conclusions: Through the analysis some important features of the model were identified, these features were presented via simulations. It was mainly observed the capacity of the model to describe linear and circular movements depending on parameters configuration.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Helbert Eduardo Espitia Cuchango, Universidad Distrital Francisco José de Caldas

Ingeniero Electrónico, Universidad Distrital Francisco José de Caldas, Colombia. Ingeniero Mecatrónico, Universidad Nacional de Colombia, Colombia.  Especialista en Telecomunicaciones Móviles,  Universidad Distrital Francisco José de  Caldas.  Magister en Ingeniería Industrial, Universidad Distrital Francisco José de Caldas. Magister en Ingeniería Mecánica, Universidad Nacional de Colombia. Doctor en Ingeniería de Sistemas y Computación, Universidad Nacional de Colombia.

Referencias

A. Czir´ok, T. Vicsek, “Collective behavior of interacting self-propelled particles”. Physica A, vol. 281, num. 1-4,

, pp. 17-29.

T. Vicsek, “Universal patterns of collective motion from minimal models of flocking”. Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, 2008, pp. 3-11.

A. Mikhailov, V. Calenbuhr, “From cells to societies: Models of complex coherent action”. Springer Series in

Synergetics, 2002, pp. 33-68.

W. Ebeling, “Active brownian motion of pairs and swarms of particles”. Acta Physica Polonica B, vol. 38, 2007,

pp. 1657-1671.

U. Erdmann,W. Ebeling, V. Anishchenko, “Excitation of rotational modes in two-dimensional systems of driven

Brownian particles Physical”. Physical Review E, vol. 65, 2002, pp. 061106 1-9.

H. Espitia, J. Sofrony, “Path planning of mobile robots using potential fields and swarms of brownian particles”.

IEEE Congress on Evolutionary Computation (CEC), June 5-8, 2011.

H. Espitia, J. Sofrony, “Vortex Particle Swarm Optimization”. IEEE Congress on Evolutionary Computation

(CEC), June, 2013.

H. Espitia, J. Sofrony, “Algoritmo de optimizaci´on basado en enjambres de part´ıculas con comportamiento de

vorticidad y b´usqueda individual y grupal”. Tecnura, vol. 18, no. 42, 2014, pp. 24-37.

H. Espitia, J. Sofrony, “Vortex Particle Swarm Optimization in 2D Cases”. International Conference on Mechatronics,

Electronics and Automotive Engineering (ICMEAE), November, 2015.

H. Espitia, J. Sofrony, “Proposal for Parameter Selection of the Vortex Particle Swarm Optimization During

the Dispersion Stage”. International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE),

November, 2013.

H. Espitia, J. Sofrony, “Dispersion as Stopping Criterion for Vortex Particle Swarm Optimization”. 2nd International

Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), December

-24, 2013.

D. Sumpter, “The principles of collective animal behaviour”. Philosophical Transactions of the Royal Society B,

vol. 361, num. 1465, 2006, pp. 5-22.

T. Vicsek, A. Czir´ok, E. Ben-Jacob, I. Cohen, O. Shochet, “Novel type of phase transition in a system of selfdriven

particles”. Physical Review Letters, vol. 75, 1995, pp. 1226-1229.

I. Couzin, J. Krause, N. Franks, S. Levin, “Effective leadership and decision making in animal groups on the

move”. Letters to nature, vol. 433, 2005, pp. 513-516.

I. Bajec, F. Heppner, “Organized flight in birds”. Animal Behaviour, vol. 78, num. 4, 2009, pp. 777-789.

H. Zhang, M. Chen, G. Stan, T. Zhou, J. Maciejowski, “Collective behavior coordination with predictive mechanisms”.

IEEE Circuits and Systems Magazine, vol. 8, num. 3, 2008, pp. 67-85.

H. Berg, Random walks in biology, Princeton University Press, 1983.

Y. C¸ engel, J. Cimbala, Mec´anica de fluidos, Fundamentos y Aplicaciones, McGraw-Hill, 2006.

H. Levine, W. Rappel, I. Cohen, “Self-organization in systems of self-propelled particles”. Physical Review E,

vol. 63, num. 1, 2001.

M. D’Orsogna, Y. Chuang, A. Bertozzi, L. Chayes, “Self-propelled particles with soft-core interactions: patterns,

stability, and collapsel”. Physical Review Letters, vol. 96, 2006, pp. 104302 1-4.

W. Ebeling, U. Erdmann, “Nonequilibrium Statistical Mechanics of Swarms of Driven Particles”. Physica A:

Statistical Mechanics and its Applications, vol. 314, num. 1-4, 2002, pp. 92-96.

U. Erdmann, W. Ebeling, A. Mikhailov, “Noise Induced Transition from Translational to Rotational Motion of

Swarms”. Physical Review E, vol. 71, num. 5, 2005, pp. 051904 1-7.

A. Ordemann, “Vortex-swarming of the zooplankton Daphnia”. The Biological Physicist, vol. 2, num. 3, 2002,

pp. 5-10.

C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model, in computer graphics”. SIGGRAPH’

Conference Proceedings, 1987.

F. Schweitzer, “Active Brownian particles with internal energy depot”. Traffic and Granular Flow’99, 2000, pp.

-172.

F. Schweitzer, W. Ebeling, B. Tilch, “Statistical mechanics of canonical dissipative systems and applications to

swarm dynamics”. Physical Review E, vol. 64, num. 2, 2001, pp. 021110 1-12.

R. Mach, F. Schweitzer, “Multi-agent model of biological swarming”. Lecture Notes in Artificial Intelligence

(LNAI), vol. 2801, 2003, pp. 810-820.

K. Alligood, T. Sauer, J. Yorke, An introduction to dynamical systems, Springer, 1st edition, 1997.

C. McInnes, “Vortex formation in swarms of interacting particles”. Physical Review E, vol. 75, num. 3, 2007,

pp. 032904 1-3.

Cómo citar
Espitia Cuchango, H. E., & Sofrony Esmeral, J. I. (2016). Análisis y simulación del comportamiento de vorticidad para el modelo de partícula auto-propulsada. Ingeniería, 21(3), 324-345. https://doi.org/10.14483/udistrital.jour.reving.2016.3.a05
Publicado: 2016-10-09
Sección
Inteligencia Computacional