Diseño de un modelo de tráfico a través de series de tiempo para pronosticar trafico Wimax

Design Of A Traffic Model Through Time Series To Forecast Wimax Traffic

  • Octavio José Salcedo Parra Universidad Distrital Francisco José de Caldas
  • César Augusto Hernández Suárez Universidad Distrital Francisco José de Caldas
  • Andrés Escobar Díaz Universidad Distrital Francisco José de Caldas
Palabras clave: ARIMA, autocorrelación, correlación, estocástico, modelo de tráfico, serie de tiempo, red de comunicaciones (es_ES)

Resumen (es_ES)

Ese artículo pretende iniciar al lector en modelos estadísticos con series de tiempo, que permitan estimar pronósticos futuros de tráfico en las redes de comunicaciones modernas, haciendo uso de la predecibilidad del tráfico con dependencia de rango corto (SDR), para poder realizarun control más oportuno y eficiente en forma integrada a difeentes niveles de la jerarquía funcional de la red. Este modelamiento en series de tiempo, esta basado en medidas tomadas de los eventos con una base periódica. El objetivo de esta investigación es demostrar que las series de tiempo son una excelene herramienta para el modelamiento de tráfico de datos en redes Wimax. Lo anterior es posible a través de la metodología de Box-Jenkins que se presenta en este artículo. Al final de esta investigación se logro modelar una serie de tráfico Wimax de 10 días a través de una serie de tiempo ARIMA con un error pequeño.

Resumen (en_US)

This paper tries to initiate to the reader in statistical models with time series, that allow to consider future forecasting of traffic in the modern Communication networks, making use of the forecasting of the traffic with dependency of long rank (LDR) and dependency of short rank (SDR), to be able to make a more opportune and efficient control in form integrated at different levels from the functional hierarchy of the network. This time series modeling is based on measures taken from events with a periodic base. The objective of this research is to demostrate that the time series are an excellent tool for modeling of data traffic on Wimax networks. This is possible through the Box-Jenkins methodology that is presented in this article. At the end of this investigation there is a traffic model through a series of time ARIMA with surprisingly small error.

Descargas

La descarga de datos todavía no está disponible.

Referencias

AKAIKE, H. Fitting autoregressive models for prediction. Annals of the institute of statistical mathematics. 1969. p. 243-247.

AKAIKE, H. Information theory and an extension of the maximum likelihood principle. Second international symposium on information theory. Budapest. 1973. p. 267-281.

ALZATE, Marco Aurelio. Modelos de tráfico en análisis y control de redes de comunicaciones. En: Revista de ingeniería de la Universidad Distrital Francisco José de Caldas. Bogotá. Vol. 9, No. 1 (Junio 2004); p. 63-87.

ANDERSON, T. W. Maximum likelihood estimation for vector autoregressive moving-average models, directions in time series. Institute of mathematical statistics. 1980. p. 80-111.

ANSLEY, C. F. y KOHN, R. On the estimation of ARIMA models with missing values, Time series analysis of irregularly observed data. Editorial Parzen, 1985. p. 9-37.

ARMSTRONG, J.S. Principles of forecasting. Editorial Springer. 2001.

ARVIDSSON, Å. y KARLSSON, P. "On traffic models for TCP/IP". Proc. of 16th international teletraffic congress (ITC). Edinburgh. Junio, 1999; p. 457-466.

BERAN, J. Statistics for long-memory processes. Chapman & Hall. 1994.

BERTSEKAS, Dimitri y GALLAGER, Robert. DataNetworks. Segunda edición. New Jersey: Prentice Hall, 1987.

BOX, G. E. P. y COX, D. R. An analysis of transformations. Stat. soc. 1964. p. 211-252.

BOX, G. E. P. y JENKINS, Gwilym M. Time series analysis: Forecasting and control. Revised Edition. Oakland, California: Editorial HoldenDay, 1976.

BOX, G. E. P. y PIERCE, D. A. Distribution of residual autocorrelations in autoregressive-integrated moving-average time series models. Stat. assoc. p. 1509-1526.

BRILLINGER, D.R. Time series: data analysis and theory. Universidad de California. Holden-Day. SIAM. 2001.

BROCKWELL, P.J. On continuous-time ARMA processes. En: Handbook of statistics. Elsevier, Amsterdam: Vol. 19, 2001. p. 249276.

BROCKWELL, P.J. y DAVIS, R.A. Introduction to time series and forecasting. Second edition. New York: Editorial Springer, 2002.

BROCKWELL, P.J. y DAVIS, R.A. Time series: theory and methods. Springer Verlag, New York. 1991.

CAMERANO FUENTES, Rafael. Teoría de colas. Bogota: Fondo de publicaciones Universidad Distrital Francisco José de Caldas, 1997.

CAMPOS, Manuel. Estadística actuaría III. Campus de colmenarejo. Departamento de estadística. Universidad Carlos III de Madrid. Madrid. 2006.

CASILARI, E.; REYES, A.; LECUONA, A.; DIAZ ESTRELLA, A. y SANDOVAL, F. Caracterización de tráfico de video y tráfico Internet. Universidad de Malaga, Campus de Teatinos. Málaga. 2002.

CASILARI, E.; REYES, A.; LECUONA, A.; DIAZ ESTRELLA, A. y SANDOVAL F. Modelado de tráfico telemático. Departamento de Tecnología electrónica, E.T.S.I. telecomunicación. Universidad de Málaga, Campus de Teatinos. Malaga. 2003.

CORREA MORENO, Emilia. Series de tiempo: conceptos básicos. Medellín:Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de matemáticas, 2004.

COUCH, L. Digital and analog communication system. New Jersey: Prentice Hall, 2001.

DAVIS, R. A. Maximum likelihood estimation for MA(1) processes with a root on or near the unit circle. In: Econometric theory. Vol. 12, 1996. p. 1-29

DETHE, Chandrashekhar y WAKDE D.G. On the prediction of packet process in network traffic using FARIMA time series model. Department of Electronics, College of Engineering, India. 2003.

DEVORE, Jay L. Probabilidad y estadística para ingeniería y ciencias. Quinta edición. México: Editorial Thomson, 2001.

DICKEY, D. A. and FULLER, W. A. Distribution of the estimators for autoregressive time series with a unit root. J. Amer. stat. assoc. Vol. 74, 1979. p. 427-431.

FILLATRE, Lionel; MARAKOV, Dimitry y VATON, Sandrine. Forecasting seasonal traffic flows. Computer Science Department, ENST Bretagne, Brest, Paris. 2003.

FULLER, W. A. Introduction to statistical time series. A survey, int. stat. Review, Vol. 53, 1976. p. 301-329.

GHADERI, M. On the relevance of self-similarity in network traffic prediction. Tech. Rep. School of computer science. University of Waterloo. Waterloo. 2003.

GRANGER C., W. J. Some properties of time series data and their use in econometric model specification. J. econometrics. Vol. 16, 1981. p. 121-130.

GRANGER C., W. J. The typical spectral shape of an economic variable. En: Econometrica. Vol. 34, 1996; p. 150-161.

GROSCHWITZ, Nancy K. y POLYZOS, George C. A time series model of long-term NSFNET backbone traffic. Computer Systems Laboratory, Department of Computer Science and Engineering, University of California. San Diego. 2005.

GROSSGLAUSSER, M. y BOLOT, J. C. On the relevance of longrange dependence in network traffic source. En: IEEE/ACM Trans. Networking 7. 1999.

GUERRERO GUZMAN, Víctor Manuel. Análisis estadístico de series de tiempo económicas. Segunda edición. México: Editorial Thomson, 2003.

HALANG, Z. Li and CHEN, G. Integration of fuzzy logic and chaos theory. Springer, 2006.

HAMILTON, James D. Time series analysis. New Jersey: Princeton university press, 1994. p. 25-152.

HARMANTZIS, F. C. y HATZINAKOS, D. Heavy network traffic modeling and simulation using stable FARIMA processes. Stevens institute of technology, Castle point on the Hudson. Hoboken. 2005.

HARVEY, A.C. Time series models. Harvester Wheatsheaf. 1993. 84 p.

JANG, J.-S. ANFIS: Adaptive-network-based fuzzy inference systems. En: IEEE Transactions on systems, man, and cybernetics. Vol. 23, 1993.

JANG, J.-S. and MIZUTANI, Sun E. Neuro-fuzzy and soft computing-A computational approach to learning and machine intelligence. Prentice Hall, 1997.

JONES, R. H. Fitting autoregressions. J. amer. Stat. assoc. Vol. 70, 1975. p. 590-592.

JONES, R. H. Multivariate autoregression estimation using residuals, applied time series analysis. New York: Academic Press, 1978. p. 139-162.

KAMARIANAKIS, Yiannis y PRASTACOS, Poulicos. Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. 82nd transportation research board annual convention. Paper number 03-4318. 2003.

LELAND W. E.; TAQQU, M. S.; WILLINGER, W. y D. V., Wilson. On the self-similar nature of ethernet traffic. En: IEEE/ACM Trans. Networking 2. 1994.

LOPEZ ARDAO, José Carlos. Contribución al análisis del impacto de la correlación en las prestaciones de las redes de alta velocidad. Departamento de tecnologías de las comunicaciones. Universidad de Vigo. 2004.

MAKRIDAKIS, Spyros G.; WHEELWRIGHT, Steven C. y HYNDMAN, Rob J. Forecasting: methods and applications. Tercera edición. USA: Editorial Wiley, 1997.

MONTGOMERY DOUGLAS, C.; PECK, Elizabeth A. y VINING, G. Geoffrey. Introducción al análisis de regresión lineal. Tercera edición. Editorial Continental, 2002.

OLEXA, Ron. Implementing 802.11, 802.16, and 802.20 Wireless Networks: Planning, Troubleshooting, and Operations. Editorial Newnes. 2004.

PAJOUH, Danech. Methodology for traffic forescating. The French National Institute for Transport and Safety Research (INRETS). Arcuel. 2002.

PAPADOPOULI, María; SHENG, Haipeng; RAFTOPUULOS, Elias; PLOUMIDIS, Manolis y HERNANDEZ, Felix. Short-term traffic forecasting in a campus-wide wíreles network. 2004.

PITKOW, J. E. "Summary of WWW Traffic Characterizations", Computer Networks and ISDN Systems, Vol. 30; p. 551-558. 1998.

REYES, A.; LECUONA, A.; GONZALEZ PARADA, E.; CASILARI, E.; CASASOLA, J. C. y DIAZ ESTRELLA, A. "A page-oriented WWW traffic model for wireless system simulations". Proc. of 16th international teletraffic congress (ITC). Edinburgh. Junio, 1999; p. 1271-1280.

SCHWARTZ, Misha. Redes de telecomunicaciones, protocolos, modelado y análisis. Editorial Addison Wesley Iberoamericana. 1994.

STALLINGS, William. Comunicaciones y redes de computadores. Séptima edición. Madrid: Prentice Hall, 2004.

SWEENEY, Daniel. WiMax Operator's Manual: Building 802.16 Wireless Networks. Editorial Apress. 2004.

TAKAGI, M. Sugeno. Fuzzy identification of system and its applications to modeling and control. En: IEEE Transactions on systems, man, and cybernetics. Vol. 15, 1985.

TANENBAUM, Andrew S. Redes de Computadoras. Cuarta Edicion. México: Prentice Hall, 2003.

WILLINGER W.; PAXON V. y TAQQU M. S. Self-similarity and heavy tails: structural modeling of network traffic. En: A practical guide to heavy tails: statistical techniques and applications. Birkhauser, Boston. 1998; p. 27-53.

XIAOQIAO, Meng; STARSKY, Wong; YUAN, Yuan, y SONGWU, Lu. Characterizing flows in large wireless data networks. En: ACM/ IEEE international conference on mobile computing and networking. Philadelpia. 2004.

YU, Guoqiang y ZHANG, Changshui. Switching ARIMA model based forecasting for traffic flow. State key laboratory of intelligent technology and system, Departament of automation, Tsinghua University. 2003.

ZAK, S. Systems and control. Oxford: oxford university Press, 2003.

Cómo citar
Salcedo Parra, O. J., Hernández Suárez, C. A., & Escobar Díaz, A. (2006). Diseño de un modelo de tráfico a través de series de tiempo para pronosticar trafico Wimax. Ingeniería, 12(1), 4-13. https://doi.org/10.14483/23448393.2094
Publicado: 2006-11-30
Sección
Ciencia, investigación, academia y desarrollo

Artículos más leídos del mismo autor/a

1 2 3 4 > >>