DOI:
https://doi.org/10.14483/23448393.23474Published:
2025-08-01Issue:
Vol. 30 No. 2 (2025): May-AugustSection:
Electrical, Electronic and Telecommunications EngineeringEnergy Management System using Particle Swarm Optimization for Operating Costs Reduction in AC Microgrids with Battery Storage during Grid-Connected and Islanded Operation
Sistema de gestión de energía mediante optimización por enjambre de partículas para la reducción de costos operativos en microrredes de CA con almacenamiento en baterías durante la operación interconectada y aislada
Keywords:
Energy management system, battery energy storage, microgrids, swarm optimization, grid-on, grid-off (en).Keywords:
Sistema de gestión de energía, Almacenamiento de energía en baterías, Microrred, Optimización por cúmulo de ´´´ partículas (es).Downloads
Abstract (en)
Context: This paper proposes an energy management system (EMS) for battery energy storage systems (BESS) to reduce operating costs in AC microgrids (MGs) operating in grid-connected (GON) and islanded (GOFF) mode, considering energy purchase, conventional generation, and maintenance costs while accounting for all the operational constraints of the system and its components.
Method: A master-slave methodology based on particle swarm optimization (PSO) and an hourly power flow based on the successive approximations method (SAM) is used as a smart BESS operation strategy. This proposal is validated in a 33-bus AC-MG operating in GON and GOFF modes, in comparison with two methods utilizing the vortex search algorithm (VSA) and conitnuos version of the Chu & Beasley genetic algorithm (CBGA) and the same power flow.
Results: The PSO-based EMS achieved the lowest costs i.e., 6897.59 USD/day (GON) and 17 527.42 USD/day (GOFF), with cost reductions of 1.45 and 0.13 %, and low standard deviation values (0.067 and 0.014 %), which confirms its efficiency, robustness, and constraint compliance.
Conclusions: The EMS based on PSO/SAM delivers superior solution quality and processing times in both modes of operation. In GON mode, it reduces the mean costs by 0.0287%compared to the VSA and 0.2252%vs. the CBGA, whereas, in GOFF mode, the reductions are 0.0191 and 0.0355 %, respectively. These results reflect a more effective cost reduction than exact methods, which constitutes this paper’s main contribution.
Abstract (es)
Contexto: En este artículo se propone un sistema de gestión energética (EMS) para sistemas de almacenamiento de energía en baterías (BESS) orientado a la reducción de costos operativos en microrredes (MG) AC que operan conectados a la red (GON) y en modo isla (GOFF), considerando los costos de compra de energía, generación convencional y mantenimiento a la vez que se cumple con todas las restricciones operativas del sistema y sus componentes.
Métado: Como estrategia de operación inteligente del sistema de almacenamiento en baterías, se utiliza una metodología maestro-esclavo basada en optimización por enjambre de partículas y un flujo de potencia horario basado en el método de aproximaciones sucesivas (SAM). Esta propuesta se valida en una MG-AC de 33 nodos, operando en modos GON y GOFF, en comparación con dos métodos alternativos que utilizan el algoritmo de búsqueda por vórtices (VSA) y el algoritmo genético continuo de Chu & Beasley (CBGA) y el mismo método de flujo de potencia.
Resultados: El EMS basado en PSO alcanzó los menores costos, i.e., 6897.59 USD/día (GON) y 17 527.42 USD/día (GOFF), con reducciones en costos del 1.45 y el 0.13% respectivamente y bajas desviaciones estándar (0.067 y 0.014 %), lo que confirma su eficiencia, robustez y cumplimiento de restricciones.
Conclusiones: El EMS basado en PSO/SAM ofrece una calidad de solución y un tiempo de procesamiento superiores en ambos modos de operación. En el modo GON, reduce los costos promedio en un 0.0287% en comparación con el VSA y en un 0.2252% con respecto al CBGA, mientras que, en el modo GOFF, las reducciones son de 0.0191 y 0.0355% respectivamente. Estos resultados reflejan una reducción de costos más efectiva que la obtenida por métodos exactos, lo que constituye la principal contribución de este artículo.
References
A. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, “Ac microgrid control and management strategies: Evaluation and review,” IEEE Power Elect. Mag., vol. 6, no. 2, pp. 18–31, 2019. https://doi.org/10.1109/MPEL.2019.2910292
A. N. Sheta, G. M. Abdulsalam, B. E. Sedhom, and A. A. Eladl, “Comparative framework for ac-microgrid protection schemes: challenges, solutions, real applications, and future trends,” Protect. Control Mod. Power. Syst., vol. 8, no. 2, pp. 1–40, 2023. https://doi.org/10.1186/s41601-023-00296-9
R. Kandari, N. Neeraj, and A. Micallef, “Review on recent strategies for integrating energy storage systems in microgrids,” 2023. https://doi.org/10.3390/en16010317
M. Uzair, L. Li, M. Eskandari, J. Hossain, and J. G. Zhu, “Challenges, advances and future trends in ac microgrid protection: With a focus on intelligent learning methods,” Renew. Sust. Energy Rev., vol. 178, p. 113228, 2023. https://doi.org/10.1016/j.rser.2023.113228
A. A. R. Mohamed, R. J. Best, X. Liu, and D. J. Morrow, “Two-phase bess optimization methodology to enhance the distribution network power quality and mitigate violations,” IET Renew. Power Gen., vol. 17, no. 11, pp. 2895–2908, 2023. https://doi.org/10.1049/rpg2.12583
N. I. Labra-Caceres, L. F. Grisales-Noreña, R. I. Bolanos, J. A. Guzman-Henao, and O. D. Montoya, “Energy management system for PV-based distributed generators in AC microgrids using an adapted JAYA optimizer to minimize operational costs, energy losses, and CO2 emissions,” Res. Eng., p. 104397, 2025. https://doi.org/10.1016/j.rineng.2025.104397
L. F. Grisales-Noreña, H. P. Vega, O. D. Montoya, V. Botero-Gomez, and D. Sanin-Villa, “Cost optimization of ac microgrids in grid-connected and isolated modes using a population-based genetic algorithm for energy management of distributed wind turbines,” Mathematics, vol. 13, no. 5, p. 704, 2025. https://doi.org/10.3390/math13050704
A. Rajagopalan, K. Nagarajan, O. D. Montoya, S. Dhanasekaran, I. A. Kareem, A. S. Perumal, N. Lakshmaiya, and P. Paramasivam, “Multi-objective optimal scheduling of a microgrid using oppositional gradient-based grey wolf optimizer,” Energies, vol. 15, no. 23, p. 9024, 2022. https://doi.org/10.3390/en15239024
L. Grisales-Noreña, B. Cortes-Caicedo, O. D. Montoya, J. Hernandez, and G. Alcala, “A battery energy management system to improve the financial, technical, and environmental indicators of colombian urban and rural networks,” Journal of Energy Storage, vol. 65, p. 107199, 2023. https://doi.org/10.1016/j.est.2023.107199
Q. Yan, Z. Wang, L. Xing, and C. Zhu, “Optimal economic analysis of battery energy storage system integrated with electric vehicles for voltage regulation in photovoltaics connected distribution system,” Sustainability, vol. 16, no. 19, p. 8497, 2024. https://doi.org/10.3390/su16198497
S. Alexprabu and K. Sathiyasekar, “Battery energy management systems in active distribution network,” in 2023 4th Int. Conf. Smart Elect. Comm. (ICOSEC). IEEE, 2023, pp. 194–200. https://10.1109/ICPCSN58827.2023.00123
Y. Sahri, Y. Belkhier, S. Tamalouzt, N. Ullah, R. N. Shaw, M. S. Chowdhury, and K. Techato, “Energy management system for hybrid pv/wind/battery/fuel cell in microgrid-based hydrogen and economical hybrid battery/super capacitor energy storage,” Energies, vol. 14, no. 18, p. 5722, 2021. https://doi.org/10.3390/en14185722
T. A. Fagundes, G. H. F. Fuzato, L. J. R. Silva, A. M. dos Santos Alonso, J. C. Vasquez, J. M. Guerrero, and R. Q. Machado, “Battery energy storage systems in microgrids: A review of soc balancing and perspectives,” IEEE Op. J. Ind Elect. Soc., 2024. https://doi.org/10.1109/OJIES.2024.3455239
S. Wang, Q. Tan, X. Ding, and J. Li, “Efficient microgrid energy management with neural-fuzzy optimization,” Int. J. Hydrogen Energy, vol. 64, pp. 269–281, 2024. https://doi.org/10.1016/j.ijhydene.2024.03.291
R. Nebuloni, L. Meraldi, C. Bovo, V. Ilea, A. Berizzi, S. Sinha, R. B. Tamirisakandala, and P. Raboni, “A hierarchical two-level milp optimization model for the management of grid-connected bess considering accurate physical model,” App.Energy, vol. 334, p. 120697, 2023. https://doi.org/10.1016/j.apenergy.2023.120697
S. Behera and N. B. Dev Choudhury, “A systematic review of energy management system based on various adaptive controllers with optimization algorithm on a smart microgrid,” Int. Trans. Elect. Energy Syst., vol. 31, no. 12, p. e13132, 2021. https://doi.org/10.1002/2050-7038.13132
A. Kazikova, M. Pluhacek, and R. Senkerik, “Why tuning the control parameters of metaheuristic algorithms is so important for fair comparison?” Mendel, vol. 26, no. 2, pp. 9–16, 2020. https://doi.org/10.13164/mendel.2020.2.009
C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning methods for metaheuristics,” IEEE Trans. Evol. Comp., vol. 24, no. 2, pp. 201–216, 2019. https://doi.org/10.1109/TEVC.2019.2921598
L. S. Avellaneda-Gomez, L. F. Grisales-Noreña, B. Cortes-Caicedo, O. D. Montoya, and R. I. Bolanos, “Optimal battery operation for the optimization of power distribution networks: An application of the ant lion optimizer,” J. Energy Storage, vol. 84, p. 110684, 2024. https://doi.org/10.1016/j.est.2024.110684
M. Issa, H. Ibrahim, H. Hosni, A. Ilinca, and M. Rezkallah, “Effects of low charge and environmental conditions on diesel generators operation,” Eng, vol. 1, no. 2, pp. 137–152, 2020. https://doi.org/10.3390/eng1020009
A. Soroudi, Power system optimization modeling in GAMS. Springer, 2017, vol. 78. https://doi.org/10.1007/978-3-319-62350-4
F. Marini and B. Walczak, “Particle swarm optimization (pso). a tutorial,” Chemometrics Intell. Lab. Syst., vol. 149, pp. 153–165, 2015. https://doi.org/10.1016/j.chemolab.2015.08.020
S. Charadi, H. E. Chakir, A. Redouane, A. El Hasnaoui, and M. Et-taoussi, “Bi-objective optimal active and reactive power flow management in grid-connected AC/DC hybrid microgrids using metaheuristic–PSO,” Clean Energy, vol. 7, no. 6, pp. 1356–1380, 12 2023. https://doi.org/10.1093/ce/zkad081
D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Comp., vol. 22, no. 2, pp. 387–408, 2018. https://doi.org/10.1007/s00500-016-2474-6
V. Kusuma, A. Firdaus, S. Suprapto, D. Putra, Y. Prasetyo, and F. Filliana, “Leveraging pso algorithms to achieve optimal stand-alone microgrid performance with a focus on battery lifetime,” Int. J. App. Power Eng., vol. 12, no. 3, pp. 293–299, Sep. 2023. https://doi.org/10.11591/ijape.v12.i3.pp293-299
O. D. Montoya and W. Gil-González, “On the numerical analysis based on successive approximations for power flow problems in ac distribution systems,” Elect. Power Syst. Res., vol. 187, p. 106454, 2020. https://doi.org/10.1016/j.epsr.2020.106454
M. E. Baran and A. W. Kelley, “A branch-current-based state estimation method for distribution systems,” IEEE Trans. Power Syst., vol. 10, no. 1, pp. 483–491, 1995. https://doi.org/10.1109/59.373974
A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renew. Sust. Energy Rev., vol. 90, 04 2018. https://doi.org/10.1016/j.rser.2018.03.040
S. Parhizi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 1–1, 01 2015. 10.1109/ACCESS.2015.2443119
W. Gil-González, O. D. Montoya, L. F. Grisales-Noreña, and A. Escobar-Mejía, “Optimal economic–environmental operation of bess in ac distribution systems: A convex multi-objective formulation,” Computation, vol. 9, no. 12, p. 137, 2021. https://doi.org/10.3390/computation9120137
Tensiones y Frecuencia Nominales en Sistemas de Energa Electrica En Redes de Servicio Publico NTC 1340, I.C. de Normas Tecnicas y Certificacion (ICONTEC), 2004.
B. Cortes-Caicedo, L. F. Grisales-Noreña, O. D. Montoya, M. A. Rodriguez-Cabal, and J. A. Rosero, “Energy management system for the optimal operation of pv generators in distribution systems using the antlion optimizer: A colombian urban and rural case study,” Sustainability, vol. 14, no. 23, p. 16083, 2022. https://doi.org/10.3390/su142316083
B. Do˘gan and T. Olmez, “A new metaheuristic for numerical function optimization: Vortex search algorithm,” Info. Sci., vol. 293, pp. 125–145, 2015. https://doi.org/10.1016/j.ins.2014.08.053
P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” J. Heuristics, vol. 4, pp. 63–86, 1998.
R. W. Hockney and C. R. Jesshope, Parallel Computers 2: architecture, programming and algorithms. CRC Press, 2019. https://doi.org/10.1201/9780367810672
D.-H. Yoon and Y. Han, “Parallel power flow computation trends and applications: A review focusing on gpu,” Energies, vol. 13, no. 9, p. 2147, 2020. https://doi.org/10.3390/en13092147
S. Lalwani, H. Sharma, S. C. Satapathy, K. Deep, and J. C. Bansal, “A survey on parallel particle swarm optimization algorithms,” Arabian J. Sci. Eng., vol. 44, pp. 2899–2923, 2019. https://doi.org/10.1007/s13369-018-03713-6
L. F. Grisales-Noreña, O. D. Montoya, E.-J. Marin-Garcia, C. A. Ramos-Paja, and A.-J. Perea-Moreno, “Integration of pv distributed generators into electrical networks for investment and energy purchase costs reduction by using a discrete–continuous parallel pso,” Energies, vol. 15, no. 20, p. 7465, 2022. https://doi.org/10.3390/en15207465
P. Chu and J. Beasley, A genetic algorithm for the set partitioning problem. London, UK: Imperial College, 1995.
V. M. Garrido-Arévalo, O. D. Montoya, W. Gil-González, L. F. Grisales-Noreña, and J. C.
Hernandez, “An sdp relaxation in the complex domain for the efficient coordination of bess and dgs in single-phase distribution grids while considering reactive power capabilities,” J. Energy Storage, vol. 90, p. 111913, 2024. https://doi.org/10.1016/j.est.2024.111913
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Luis Fernando Grisales Norena

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.












