DOI:

https://doi.org/10.14483/23448393.19091

Published:

2022-11-20

Issue:

Vol. 28 No. 1 (2023): January-April

Section:

Biomedical Engineering

Una Revisión de los sistemas de control aplicados a los simuladores de rodilla

A Review on Control Systems Applied to Knee Simulators

Authors

  • José Armando Olvera Balderas https://orcid.org/0000-0001-8934-507X
  • Julio César Sosa-Savedra Instituto Politécnico Nacional, CICATA Unidad Qro https://orcid.org/0000-0002-2318-2957
  • Rubén Ortega González Instituto Politécnico Nacional - ESCOM
  • José Dolores Oscar Barceinas Sánchez Instituto Politécnico Nacional, CICATA-Qro

Keywords:

knee simulator, control strategies, biomedical control, dynamic systems (en).

Keywords:

simulador de rodilla, estrategias de control, control biomédico, sistemas dinámicos (es).

Abstract (es)

Contexto: Los mecanismos de simulación y/o desgaste de articulaciones han sido estudiados y aplicados en sistemas biomecánicos de rodilla por más de 30 años. Sin embargo, estos no han sido ampliamente reportados en cuanto a sus estrategias de control y/o automatización. El objetivo de este trabajo es presentar los avances del desarrollo tecnológico de las diferentes plataformas y modelos de simuladores de rodilla, con base principalmente en las plataformas de Oxford y Stanmore.

Método: Se realizó una revisión exhaustiva de las patentes de equipos comerciales y artículos científicos. El enfoque utilizado consideró la cinemática y dinámica de las plataformas y los modelos de control, los actuadores, la interfaz y el método de sintonización empleados, así como las pruebas desarrolladas y el error del sistema.

Resultados: No se han reportado sistemas biomecánicos de rodilla de manera generalizada en lo que a sus estrategias de control y/o automatización se refiere, debido a que muchos de ellos son comerciales y patentados. Existen plataformas que están certificadas bajo ciertos estándares, pero solo dependen de la variable controlada. Adicionalmente, se presenta una comparación detallada de los distintos tipos de plataformas existentes, en la cual destacan los modelos hidráulicos con controladores PID.

Conclusiones: Existe un  área de oportunidad para proponer nuevas alternativas de diseños y/o estrategias de control para simuladores de rodillas Esto, a su vez, abre la posibilidad de proponer nuevos diseños de alguna otra articulación, así como mejoras a los modelos existentes.

Abstract (en)

Context: Simulation and wear joint mechanisms have been studied and applied in knee biomechanical systems for more than 30 years. However, these have not been widely reported with regard to their control and/or automation strategies. This work aims to present the advances made in the technological development of the different platforms and models of knee simulators, based mainly on the Oxford and Stanmore platforms.
Method: An exhaustive review of commercial equipment patents and scientific papers was conducted. The approach considered the kinematics and dynamics of the platforms and the control models actuators, interface, and tuning method used, as well as the tests conducted and the system error.

Results: Biomechanical knee systems have not been widely reported, as far as their control and/or automation strategies are concerned, because many of them are commercial and patented. Some platforms are certified under certain standards but depend only on the controlled variable. In addition, a detailed comparison of the different types of existing platforms is presented, highlighting the hydraulic models with PID controllers.

Conclusions: There is an area of opportunity to propose new design alternatives and/or control strategies for knee simulators. This, in turn, opens the possibility of developing new designs for other joints, as well as improved models of existing ones.

Author Biographies

José Armando Olvera Balderas

He received the degree in Electronic Engineering in 2014 from the “Tecnológico Nacional de México” (National Technological Institute of Mexico), Querétaro, Mexico; and the Master's degree in Advanced Technology from the “Instituto Politécnico Nacional” (National Polytechnic Institute), Mexico City, Mexico; in 2017. He is currently studying for a PhD degree at the “Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada” (Research Center for Applied Science and Advanced Technology), Queretaro of the National Polytechnic Institute. His main research interests are embedded systems, controller design, and automation.

Julio César Sosa-Savedra, Instituto Politécnico Nacional, CICATA Unidad Qro

Julio C. Sosa received the B.S. degree in electronic engineering from ITLAC, Mich. Mexico, in 1997 and the M.S. degree electrical engineering from CINVESTAV-IPN, Mexico, in 2000 and the Ph.D. degree in technology of information and computation from the University of Valencia, Spain, in 2007. From 1997 to 2015, he was an Associate Professor with the Computer Science and Engineering Department, ESCOM - Instituto Politecnico Nacional. Since 2016, he has been a Titular Professor at the Department of Scientific and Technological Research and Innovation at Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Queretaro, Instituto Politecnico Nacional, Mexico and member of the National System of Researchers of Mexico. His main research fields are digital signal and image processing, home automation and energy saving technologies.

Rubén Ortega González, Instituto Politécnico Nacional - ESCOM

Rubén Ortega received the B.Sc. degree in electrical engineering, in 1999, and the M.Sc. degree in systems engineering from the Instituto Politécnico Nacional, Ciudad de Mexico, Mexico, and the D.E.A. degree in electrical engineering, computer, and electronic system from the Universidad de Oviedo, Oviedo, Spain, in 2009. He is currently pursuing the Ph.D. degree with the Universidad Politécnica de Valencia, Valencia, Spain, in 2012. He has been a Professor with the Department of Computer Science and Engineering, Escuela Superior de Cómputo, Instituto Politécnico Nacional, since 1995. Currently collaborates in the Postgraduate Program in Electrical Engineering of the Postgraduate Studies and Research Section of the Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Naciona, Ciudad de México, México. His main research fields are in modeling and control of power converters applied to the distributed generation in microgrids and digital signal processing.

José Dolores Oscar Barceinas Sánchez, Instituto Politécnico Nacional, CICATA-Qro

Dr. José Dolores Oscar Barceinas Sánchez, es Profesor-Investigador Titular “B” en el CICATA-IPN Unidad Querétaro, desde el 1 de mayo de 2008.Obtuvo el grado de Ph. D. en el Department of Engineering Materials of the University of Sheffield en febrero de 1998 y el de Maestro en Ciencias en el Instituto Tecnológico de Saltillo en agosto de 1992, y el título de Químico Metalúrgico en la Universidad Autónoma de Querétaro en febrero de 1989. Recibió la Medalla al Mérito Académico por Universidad Autónoma de Querétaro, el 8 de diciembre de 1988.

Ha publicado 30 en revistas indexadas; 6 en revistas internacionales; 4 en revistas nacionales con arbitraje y 47 en extenso en memorias de congreso. Tiene 2 registros de derechos de autor. Sus líneas de investigación versan sobre Tribología y Biotribología, Síntesis de Compósitos, Tratamiento térmico de aleaciones base hierro, base aluminio y base titanio, Caracterización de materiales mediante microscopias electrónicas de barrido y transmisión. Es Investigador Nacional Nivel I desde el 2009. Realizó una estancia como “Faculty Visit” en el Chemical Engineering and Materials Science Department de la University of California Davis, U.S., California, de septiembre 2003 a mayo 2004. Su anterior empleo fue en CIATEQ, A.C., como Coordinador de Programa de Investigación de enero de 1998 a abril de 2008. Desde su ingreso a realizado proyectos institucionales anuales y siete proyectos con financiamiento externo, principalmente del CONACYT, ha colaborado en tres proyectos interinstitucionales y realizado quince asesorías y servicios especializados para la industria.

References

A. Zavatsky, “A kinematic-freedom analysis of a flexed-knee-stance testing rig,” J. Biomech., vol. 30, no. 3, pp. 277–280, mar 1997. [Online]. Available: https://doi.org/10.1016/S0021-9290(96)00142-X

K. M. Varadarajan, R. E. Harry, T. Johnson, and G. Li, “Can in vitro systems capture the characteristic differences between the flexion–extension kinematics of the healthy and TKA knee,” Med. Eng. Phys., vol. 31, no. 8, pp. 899–906, oct 2009. [Online]. Available: https://doi.org/10.1016/j.medengphy.2009.06.005

O. Szklar, “Development of an unconstrained two-force dynamic simulator for the human knee joint,” M.S. thesis, Dep. Mech. Eng., McGill Univ., Montreal, Canada, 1985. [Online]. Available: https://escholarship.mcgill.ca/concern/theses/p5547s51j

T. M. Guess and L. P. Maletsky, “Computational Modeling of a Dynamic Knee Simulator for Reproduction of Knee Loading,” J. Biomech. Eng., vol. 127, no. 7, pp. 1216–1221, dec 2005. [Online]. Available: https://doi.org/10.1115/1.2073676

L. P. Maletsky and B. M. Hillberry, “Simulating Dynamic Activities Using a Five-Axis Knee Simulator,” J. Biomech. Eng., vol. 127, no. 1, pp. 123–133, feb 2005. [Online]. Available: https://doi.org/10.1115/1.1846070

J. Victor, L. Labey, P. Wong, B. Innocenti, and J. Bellemans, “The influence of muscle load on tibiofemoral knee kinematics,” J. Orthop. Res., vol. 28, no. 4, pp. 419–428, 2009. [Online]. Available: https://doi.org/10.1002/jor.21019

D. De Jongh, W. Wargnye, and R. De Keyser, “Control of knee flexion in a knee simulator,” M.S. thesis, Fac. Eng. Archit., Ghent Univ., Ghent, Belgium, 2014. [Online]. Available: https://lib.ugent.be/catalog/rug01:002153765

A. Steinbruck, C. Schroder, M. Woiczinski, A. Fottner, P. E. Muller, and V. Jansson, “The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study,” Arch. Orthop. Trauma Surg., vol. 134, no. 6, pp. 867–872, jun 2014. [Online]. Available: https://doi.org/10.1007/s00402-014-1956-1

A. Chevalier, C. M. Ionescu, and R. De Keyser, “Analysis of robustness to gain variation in a fractional-order PI controller for knee joint motion,” in ICFDA’14 Int. Conf. Fract. Differ. Its Appl. 2014. IEEE, jun 2014, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICFDA.2014.6967359

J. R. Fuller and E. Ness, Instrumentación quirúrgica: teoría, técnicas y procedimientos. Panamericana, 2007.[Online]. Available: https://books.google.com.mx/books?id=yBwepEJsqZQC

P. S. Walker, G. W. Blunn, D. R. Broome, J. Perry, A. Watkins, S. Sathasivam, M. E. Dewar, and J. P. Paul, “A knee simulating machine for performance evaluation of total knee replacements,” J. Biomech., vol. 30, no. 1, pp. 83–89, jan 1997. [Online]. Available: https://doi.org/10.1016/S0021-9290(96)00118-2

R. Bourne, J. Goodfellow, and J. O’Connor, “A functional analysis of various knee arthroplasties,” Trans. 24th Annu. Orthop. Res. Soc., pp. 21–23, 1978.

N. Arnout, L. Vanlommel, J. Vanlommel, J. P. Luyckx, L. Labey, B. Innocenti, J. Victor, and J. Bellemans, “Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs,” Knee Surg. Sports Traumatol. Arthrosc., vol. 23, no. 11, pp. 3343–3353, nov 2015. [Online]. Available: https://doi.org/10.1007/s00167-014-3167-2

A. B. Zavatsky, “A kinematic-freedom analysis of a flexed-knee-stance testing rig,” J. Biomech., vol. 30, no. 3, p. 278, 1997.

C. K. Fitzpatrick, M. a. Baldwin, C. W. Clary, L. P. Maletsky, and P. J. Rullkoetter, “Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis,” in Orthop. Res. Soc. 2012 Annu. Meet., vol. 37, 2012, Poster. [Online]. Available: https://www.ors.org/abstract-search/

C. W. Clary, C. K. Fitzpatrick, L. P. Maletsky, and P. J. Rullkoetter, “The influence of total knee arthroplasty geometry on mid-flexion stability: An experimental and finite element study,” J. Biomech., vol. 46, no. 7, pp. 1351–1357, apr 2013. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2013.01.025

F. Fitzwater, A. Lenz, and L. Maletsky, “Modeling of a Dynamic Knee Simulator With Advanced PID Controller to Evaluate Joint Loading Conditions,” in Vol. 4A Dyn. Vib. Control. American Society of Mechanical Engineers, nov 2014, pp. 1–2. [Online]. Available: https://doi.org/10.1115/IMECE2014-38932

C. K. Fitzpatrick, M. A. Baldwin, C. W. Clary, L. P. Maletsky, and P. J. Rullkoetter, “Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis,” Comput. Methods Biomech. Biomed. Engin., vol. 17, no. 4, pp. 360–369, mar 2014. [Online]. Available: https://doi.org/10.1080/10255842.2012.684242

C. A. McLean and A. M. Ahmed, “Design and Development of an Unconstrained Dynamic Knee Simulator,” J. Biomech. Eng., vol. 115, no. 2, pp. 144–148, may 1993. [Online]. Available: https://doi.org/10.1115/1.2894114

A. Steinbr¨uck, C. Schr¨oder, M. Woiczinski, A. Fottner, P. E. M¨uller, and V. Jansson, “Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement,” Biomed. Eng. Online, vol. 12, no. 1, p. 58, 2013. [Online]. Available: https://doi.org/10.1186/1475-925X-12-58

A. Chevalier, A. Hernandez, C. M. Ionescu, M. Verstraete, and R. De Keyser, “Closed-loop Identiffication of a Multivariable Dynamic Knee Rig,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 116–121, 2015. [Online]. Available: https://doi.org/10.1016/j.ifacol.2015.12.110

S. De Coninck, J. Smis, J. Victor, P. De Baets, and M. Verstraete, “Computational modeling of a dynamic knee simulator,” Int. J. Sustain. Constr. Des., vol. 6, no. 2, p. 8, jul 2015. [Online]. Available: https://doi.org/10.21825/scad.v6i2.1124

A. Chevalier, C.-M. Ionescu, and R. De Keyser, “Control of knee joint motion in a dynamic knee rig,” in 34th Benlux Meet. Syst. Control, 2015, p. 23. [Online]. Available: https://lib.ugent.be/catalog/pug01:5944203

L. Chen, K. Gordon, and M. Hurtig, “Design and validation of a cadaveric knee joint loading device compatible with magnetic resonance imaging and computed tomography,” Med. Eng. Phys., vol. 36, no. 10, pp. 1346–1351, oct 2014. [Online]. Available: https://doi.org/10.1016/j.medengphy.2014.06.017

M. A. Verstraete and J. Victor, “Possibilities and limitations of novel in-vitro knee simulator,” J. Biomech., vol. 48, no. 12, pp. 3377–3382, sep 2015. [Online]. Available: http://doi.org/10.1016/j.jbiomech.2015.06.007

Q. Nollet and C. Ionescu, “Control of the ground reaction force in a dynamic knee rig,” M.S. thesis, Fac. Eng. Archit., Ghent Univ., Ghent, Belgium, 2017. [Online]. Available: https://lib.ugent.be/catalog/rug01:002367297

A. Chevalier, M. Verstraete, C. Ionescu, and R. De Keyser, “Decoupled Control for the Bicycling UGent Knee Rig: Design, Implementation, and Validation,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 4, pp. 1685–1694, aug 2017. [Online]. Available: https://doi.org/10.1109/TMECH.2017.2696708

R. J. Reynolds, P. S. Walker, and J. Buza, “Mechanisms of anterior-posterior stability of the knee joint under load-bearing,” J. Biomech., vol. 57, pp. 39–45, may 2017. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2017.03.016

A. Chevalier, B. De Vlieger, M. Verstraete, C. M. Ionescu, and R. De Keyser, “Decoupled PID control with gain adaptation for a cycling dynamic knee rig,” in 2016 IEEE Int. Conf. Syst. Man, Cybern. IEEE, oct 2016, pp. 002 779–002 784. [Online]. Available: https://doi.org/10.1109/SMC.2016.7844660

A. Chevalier, B. De Vlieger, M. Verstraete, C. Ionescu, and R. De Keyser, “A Data-driven Gain Adaptation Mechanism for Flexible Usability in the UGent Knee Rig,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12 210–12 215, jul 2017. [Online]. Available: https://doi.org/10.1016/j.ifacol.2017.08.2339

A. Chevalier, M. Verstraete, R. De Keyser, and M. Loccufier, “Specimen-specific control in the UGent Knee Rig using gain adaptation,” Control Eng. Pract., vol. 76, no. 76, pp. 104–111, jul 2018. [Online]. Available: https://doi.org/10.1016/j.conengprac.2018.04.012

T. R. Abo-Alhol, C. K. Fitzpatrick, C. W. Clary, A. J. Cyr, L. P. Maletsky, P. J. Laz, and P. J. Rullkoetter, “Patellar mechanics during simulated kneeling in the natural and implanted knee,” J. Biomech., vol. 47, no. 5, pp. 1045–1051, mar 2014. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2013.12.040

R. B. Durairaj, J. Shanker, P. Vinoth Kumar, and M. Sivasankar, “A Study on Development of Knee Simulator for Testing Artificial Knee Prosthesis,” in Lect. Notes Mech. Eng., 2012, pp. 351–360. [Online]. Available: https://doi.org/10.1007/978-81-322-1007-8

A. Tecame, M. Ferrari, B. Violante, G. Calafiore, R. Papalia, and P. Adravanti, “Are contemporary femoral components sizing and design likely to affect functional results in TKA? A mathematical model of an implanted knee to predict knee forces,” Musculoskelet. Surg., vol. 102, no. 3, pp. 289–297, dec 2018. [Online]. Available: https://doi.org/10.1007/s12306-

-0533-0

K. A. Weimer, T. M. Guess, K. A. Dodd, and L. P. Maletksy, “Development and Validation of a Subject-Specific Computational Human Knee Model in a Dynamic Knee Simulator,” in ASME 2007 Summer Bioeng. Conf. American Society of Mechanical Engineers, jun 2007, pp. 407–408. [Online]. Available: https://doi.org/10.1115/SBC2007-176613

A. Chevalier, “The knee joint motion in a force and position controlled knee rig: modeling, implementation and validation,” Ph.D. Dissertation, Fac. Eng. Archit., Ghent Univ., Ghent, Belgium, 2019. [Online]. Available: http://hdl.handle.net/1854/LU-8630995

A. Chevalier, J. Victor, S. Herregodts, and M. Loccufier, “Descending Staircase in the UGent Knee Rig: a Feasibility Study,” IFAC-PapersOnLine, vol. 54, no. 15, pp. 430–435, 2021. [Online]. Available: https://doi.org/10.1016/j.ifacol.2021.10.294

N. Arnout, J. Victor, A. Chevalier, J. Bellemans, and M. A. Verstraete, “Muscle loaded stability reflects ligament-based stability in TKA: a cadaveric study,” Knee Surg. Sports Traumatol. Arthrosc., vol. 30, no. 2, pp. 612–620, feb 2022. [Online]. Available: https://doi.org/10.1007/s00167-020-06329-2

C. McLean, “Design, development and performance evaluation of a dynamic knee simulator,” M.S. thesis, Dep. Mech. Eng., McGill Univ., Montreal, Canada, 1990. [Online]. Available: https://escholarship.mcgill.ca/concern/theses/gt54kp343

A. Sauer, C. Thorwaechter, I. Dupraz, A. Maas, A. Steinbrueck, T. M. Grupp, and M. Woiczinski, “Isolated effects of patellar resurfacing in total knee arthroplasty and their relation to native patellar geometry,” Sci. Rep., vol. 12, no. 1, p. 12979, dec 2022. [Online]. Available: https://doi.org/10.1038/s41598-022-16810-2

J. A. Shaw and D. G. Murray, “Knee Joint Simulator,” Clin. Orthop. Relat. Res., no. 94, pp. 15–23, jul 1973.[Online]. Available: https://doi.org/10.1097/00003086-197307000-00004

C. Maag, A. Metcalfe, I. Cracaoanu, C. Wise, and D. D. Auger, “The development of simulator testing for total knee replacements,” Biosurface and Biotribology, vol. 7, no. 2, pp. 70–82, jun 2021. [Online]. Available: https://doi.org/10.1049/bsb2.12001

F. W. Werner, L. G. Sutton, T. Hamblin, and J. Clabeaux, “Development of a Deep Knee Bend Knee Simulator,” J. Biomech., vol. 40, no. July, p. S97, jan 2007. [Online]. Available: https://doi.org/10.1016/S0021-9290(07)70094-5

P. Rullkoetter, S. McGuan, and L. Maletsky, “Development and verification of a virtual knee simulator for TKR evaluation,” in 45th Annu. Meet. Orthop. Res. Soc., California, 1999, p. 973.

F. Schall, A. M. Seitz, S. Hacker, S. van Drongelen, S. I. Wolf, A. Ignatius, and L. Dürselen, “German Society of Biomechanics (DGfB) Young Investigator Award 2019: Proof-of-Concept of a Novel Knee Joint Simulator Allowing Rapid Motions at Physiological Muscle and Ground Reaction Forces,” Front. Bioeng. Biotechnol., vol. 7, no. SEP, pp. 1–10, sep 2019. [Online]. Available: https://doi.org/10.3389/fbioe.2019.00244

P. S. Walker, G. W. Blunn, D. R. Broome, J. Perry, A. Watkins, S. Sathasivam, M. E. Dewart, and J. P. Paul, “A knee simulating machine for performance evaluation of total knee replacements,” J. Biomech., vol. 30, no. 1, p. 84, 1997. 9

J. D. DesJardins, P. S. Walker, H. Haider, and J. Perry, “The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity,” J. Biomech., vol. 33, no. 10, pp. 1231–1242, oct 2000. [Online]. Available: https://doi.org/10.1016/S0021-9290(00)00094-4

B. White, D. D’Lima, A. Drueding, J. Cox, F. Carignan, and S. Dean, “A Simulator Study of TKR Kinematics Using Modeled Soft-Tissue Constraint: Virtual Soft-Tissue Control for Knee Simulation,” J. ASTM Int., vol. 3, no. 8, p. 100251, 2006. [Online]. Available: https://doi.org/10.1520/JAI100251

B. F. White, “Prosthetic Simulator With Soft Tissue Modeling,” US patent 7 823 460 B2, Nov. 2, 2010. 10, 11

——, “System and method for joint motion simulation,” CA patent 2 779 013 A1, May 12, 2011. 10, 11

C. K. Fitzpatrick, C. Maag, C. W. Clary, A. Metcalfe, J. Langhorn, and P. J. Rullkoetter, “Validation of a new computational 6-DOF knee simulator during dynamic activities,” J. Biomech., vol. 49, no. 14, pp. 3177–3184, oct 2016. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2016.07.040

F. J. Carignan and B. F. White, “Method And Apparatus For Joint Motion Simulation,” US patent 9 351 857B, may, 2016.

AMTI Force and Motion, “ADL Knee Simulator Description and Specifications,” 2020, [Online]. Available: www.schmidtbiomedical.com/images/AMTIADLKNEEbrochure.pdf (accessed Aug. 01, 2022).

——, “ADL Knee Simulator Specifications,” 2020, [Online]. Available: http://www.amti.biz/AMTI-Knee-Simulator.pdf (accessed Jan. 03, 2022). 10, 11

J. D. DesJardins, S. A. Banks, L. C. Benson, T. Pace, and M. LaBerge, “A direct comparison of patient and force-controlled simulator total knee replacement kinematics,” J. Biomech., vol. 40, no. 15, pp. 3458–3466, jan 2007. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2007.05.022

A. Abdelgaied, J. Fisher, and L. M. Jennings, “A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 231, no. 7, pp. 643–651, jul 2017. [Online]. Available: https://doi.org/10.1177/0954411917696519

ProSim, “Knee Wear Simulator (Independent Stations) Overview,” 2017, [Online]. Available: http://www. prosim.co.uk/pdf/uk/KneeWear ENG.pdf (accessed Aug. 01, 2022)

X.-H. Wang, X. Dong, B.-Z. Zhu, L. Jiang, Z.-M. Jin, T. Suguro, and C.-K. Cheng, “A preclinical method for evaluating the kinematics of knee prostheses,” Med. Eng. Phys., vol. 66, pp. 84–90, apr 2019. [Online]. Available: https://doi.org/10.1016/j.medengphy.2019.03.003

EndoLab Mechanical Engineering GmbH, “The EndoLab® Knee Simulator,” 2022, [Online]. Available: https://www.endolab.org/simulator-knee-implants.asp (accessed Aug. 01, 2022)

A. J. Clark and D. N. Maue, “Load dynamics compensation circuit for servohydraulic control systems,” US patent WO 85/03 573, Aug. 15, 1985.

MTS Systems Corporation, “Bionix ® Knee Wear Simulator,” 2010, [Online]. Available: https://www.mts.com/media/biomedical/pdfs/brochures/100-201-737aBionixKneeWear.pdf?as=1 (accessed Jan. 03, 2022).

B. D. Schulz, S. Paul J. Leska, D. J. Willis, and H. F. Fahrendorff, “Orthopedic simulator with a multi-axis slide table assembly,” US patent 7 913 573 B2, Mar. 29, 2011.

MTS Systems Corporation, “MultiPurpose TestWare,” 2014, [Online]. Available: https://www.mts.com/cs/groups/public/documents/library/dev 002042.pdf (accessed Feb. 10, 2022).

Shore Western, “Shore Western Control System,” 2019, [Online]. Available: http://www.shorewestern.com/controls.php (accessed Dec. 03, 2019).

——, “Shore Western Control System SWCS,” Monrovia, 2019, [Online]. Available: http://www.hydratec.co. uk/downloads/SC6000.pdf (accessed Dec. 03, 2019).

——, “Knee Wear Simulator,” 2017, [Online]. Available: http://www.shorewestern.com/Documents/PDFs/Knee.pdf (accessed Aug. 01, 2022).

E. Bahc¸e and E. Emir, “Investigation of wear of ultra high molecular weight polyethylene in a soft tissue behaviour knee joint prosthesis wear test simulator,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4642–4650, sep 2019. [Online]. Available: https://doi.org/10.1016/j.jmrt.2019.08.008

——, “Wear and validation of posterior stabilized knee prosthesis with the knee simulator,” Mater. Technol., vol. 36, no. 6, pp. 356–363, may 2021. [Online]. Available: https://doi.org/10.1080/10667857.2020.1759934

N. Campbell, “Design of a Knee Simulator for the Testing of Total Knee Prostheses,” M.S. thesis, Dep. Biomed. Eng., Univ. Cape Town, Rondebosch, South Africa, 2008. [Online]. Available: http://hdl.handle.net/11427/3228

I. C. Burgess, M. Kolar, J. L. Cunningham, and A. Unsworth, “Development of a six station knee wear simulator and preliminary wear results,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 211, no. 1, pp. 37–47, jan 1997. [Online]. Available: https://doi.org/10.1243/0954411971534665

ISO 14243-1, “Implants for surgery - Wear of total knee-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test,” 2002. [Online]. Available: https://www.iso.org/standard/23256.html

ISO 14243-3, “Implants for surgery - Wear of total knee-joint prostheses - Part 3: Loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test,” 2014. [Online]. Available: https://www.iso.org/standard/56649.html

ASTM, “ASTM F3141, Standard Guide for Total Knee Replacement Loading Profiles,” 2017. [Online]. Available: https://doi.org/10.1520/F3141-17A

Lucideon, “Wear Testing - Load-Control vs. Displacement-Control,” Webinar Recording, 2020, [Online]. Available: https://www.lucideon.com/healthcare/insight-hub/lucideon-webinars/load-control-vs-displacement-control-webinar-recording (accessed Aug. 01, 2022).

How to Cite

APA

Olvera Balderas, J. A., Sosa-Savedra, J. C., Ortega González, R., & Barceinas Sánchez, J. D. O. (2022). Una Revisión de los sistemas de control aplicados a los simuladores de rodilla. Ingeniería, 28(1), e19091. https://doi.org/10.14483/23448393.19091

ACM

[1]
Olvera Balderas, J.A., Sosa-Savedra, J.C., Ortega González, R. and Barceinas Sánchez, J.D.O. 2022. Una Revisión de los sistemas de control aplicados a los simuladores de rodilla. Ingeniería. 28, 1 (Nov. 2022), e19091. DOI:https://doi.org/10.14483/23448393.19091.

ACS

(1)
Olvera Balderas, J. A.; Sosa-Savedra, J. C.; Ortega González, R.; Barceinas Sánchez, J. D. O. Una Revisión de los sistemas de control aplicados a los simuladores de rodilla. Ing. 2022, 28, e19091.

ABNT

OLVERA BALDERAS, J. A.; SOSA-SAVEDRA, J. C.; ORTEGA GONZÁLEZ, R.; BARCEINAS SÁNCHEZ, J. D. O. Una Revisión de los sistemas de control aplicados a los simuladores de rodilla. Ingeniería, [S. l.], v. 28, n. 1, p. e19091, 2022. DOI: 10.14483/23448393.19091. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/19091. Acesso em: 7 dec. 2022.

Chicago

Olvera Balderas, José Armando, Julio César Sosa-Savedra, Rubén Ortega González, and José Dolores Oscar Barceinas Sánchez. 2022. “Una Revisión de los sistemas de control aplicados a los simuladores de rodilla”. Ingeniería 28 (1):e19091. https://doi.org/10.14483/23448393.19091.

Harvard

Olvera Balderas, J. A., Sosa-Savedra, J. C., Ortega González, R. and Barceinas Sánchez, J. D. O. (2022) “Una Revisión de los sistemas de control aplicados a los simuladores de rodilla”, Ingeniería, 28(1), p. e19091. doi: 10.14483/23448393.19091.

IEEE

[1]
J. A. Olvera Balderas, J. C. Sosa-Savedra, R. Ortega González, and J. D. O. Barceinas Sánchez, “Una Revisión de los sistemas de control aplicados a los simuladores de rodilla”, Ing., vol. 28, no. 1, p. e19091, Nov. 2022.

MLA

Olvera Balderas, J. A., J. C. Sosa-Savedra, R. Ortega González, and J. D. O. Barceinas Sánchez. “Una Revisión de los sistemas de control aplicados a los simuladores de rodilla”. Ingeniería, vol. 28, no. 1, Nov. 2022, p. e19091, doi:10.14483/23448393.19091.

Turabian

Olvera Balderas, José Armando, Julio César Sosa-Savedra, Rubén Ortega González, and José Dolores Oscar Barceinas Sánchez. “Una Revisión de los sistemas de control aplicados a los simuladores de rodilla”. Ingeniería 28, no. 1 (November 20, 2022): e19091. Accessed December 7, 2022. https://revistas.udistrital.edu.co/index.php/reving/article/view/19091.

Vancouver

1.
Olvera Balderas JA, Sosa-Savedra JC, Ortega González R, Barceinas Sánchez JDO. Una Revisión de los sistemas de control aplicados a los simuladores de rodilla. Ing. [Internet]. 2022Nov.20 [cited 2022Dec.7];28(1):e19091. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/19091

Download Citation

Visitas

10

Dimensions


PlumX


Downloads

Download data is not yet available.

Most read articles by the same author(s)